Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem4 Structured version   Visualization version   GIF version

Theorem smfmullem4 44215
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem4.x 𝑥𝜑
smfmullem4.s (𝜑𝑆 ∈ SAlg)
smfmullem4.a (𝜑𝐴𝑉)
smfmullem4.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmullem4.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmullem4.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmullem4.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfmullem4.r (𝜑𝑅 ∈ ℝ)
smfmullem4.k 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem4.e 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
Assertion
Ref Expression
smfmullem4 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑞,𝑢,𝑣,𝑥   𝐵,𝑞,𝑢,𝑣   𝐶,𝑞,𝑢,𝑣,𝑥   𝐷,𝑞,𝑢,𝑣   𝐾,𝑞,𝑥   𝑅,𝑞,𝑢,𝑣   𝑆,𝑞   𝜑,𝑞,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑣,𝑢)   𝐸(𝑥,𝑣,𝑢,𝑞)   𝐾(𝑣,𝑢)   𝑉(𝑥,𝑣,𝑢,𝑞)

Proof of Theorem smfmullem4
StepHypRef Expression
1 smfmullem4.x . . . . 5 𝑥𝜑
2 smfmullem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
323ad2ant1 1131 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑅 ∈ ℝ)
4 smfmullem4.k . . . . . . . . 9 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
5 inss1 4159 . . . . . . . . . . . . 13 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
76sselda 3917 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
8 smfmullem4.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
97, 8syldan 590 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
1093adant3 1130 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐵 ∈ ℝ)
11 elinel2 4126 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1211adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
13 smfmullem4.d . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 590 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
15143adant3 1130 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐷 ∈ ℝ)
16 simp3 1136 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
17 eqid 2738 . . . . . . . . 9 ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))) = ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))
18 eqid 2738 . . . . . . . . 9 if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))) = if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))))
193, 4, 10, 15, 16, 17, 18smfmullem3 44214 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
20 rabid 3304 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
2120bicomi 223 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) ↔ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2221biimpi 215 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2322adantll 710 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2423adantlr 711 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
25 smfmullem4.e . . . . . . . . . . . . . . . . 17 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2625a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}))
27 inrab 4237 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
28 smfmullem4.s . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ SAlg)
29 smfmullem4.a . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐴𝑉)
3029, 6ssexd 5243 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴𝐶) ∈ V)
31 eqid 2738 . . . . . . . . . . . . . . . . . . . . 21 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
3228, 30, 31subsalsal 43788 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
3332adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → (𝑆t (𝐴𝐶)) ∈ SAlg)
34 nfv 1918 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑞𝐾
351, 34nfan 1903 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝜑𝑞𝐾)
3628adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → 𝑆 ∈ SAlg)
3730adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝐴𝐶) ∈ V)
389adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
39 smfmullem4.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4028, 39, 6sssmfmpt 44173 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
42 ssrab2 4009 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} ⊆ (ℚ ↑m (0...3))
434, 42eqsstri 3951 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐾 ⊆ (ℚ ↑m (0...3))
44 reex 10893 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ∈ V
45 qssre 12628 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℚ ⊆ ℝ
46 mapss 8635 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m (0...3)) ⊆ (ℝ ↑m (0...3)))
4744, 45, 46mp2an 688 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ↑m (0...3)) ⊆ (ℝ ↑m (0...3))
4843, 47sstri 3926 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾 ⊆ (ℝ ↑m (0...3))
49 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾𝑞𝐾)
5048, 49sselid 3915 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾𝑞 ∈ (ℝ ↑m (0...3)))
5144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → ℝ ∈ V)
52 ovexd 7290 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → (0...3) ∈ V)
5351, 52elmapd 8587 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾 → (𝑞 ∈ (ℝ ↑m (0...3)) ↔ 𝑞:(0...3)⟶ℝ))
5450, 53mpbid 231 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾𝑞:(0...3)⟶ℝ)
55 0z 12260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℤ
56 3z 12283 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ∈ ℤ
57 0re 10908 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ ℝ
58 3re 11983 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
59 3pos 12008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 < 3
6057, 58, 59ltleii 11028 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ 3
6155, 56, 603pm3.2i 1337 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)
62 eluz2 12517 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3))
6361, 62mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ (ℤ‘0)
64 eluzfz1 13192 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 0 ∈ (0...3))
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...3)
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 0 ∈ (0...3))
6754, 66ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘0) ∈ ℝ)
6867adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ)
6968rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ*)
70 0le1 11428 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
71 1re 10906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 ∈ ℝ
72 1lt3 12076 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 3
7371, 58, 72ltleii 11028 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ≤ 3
7470, 73pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 1 ∧ 1 ≤ 3)
75 1z 12280 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℤ
76 elfz 13174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3)))
7775, 55, 56, 76mp3an 1459 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3))
7874, 77mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ (0...3)
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 1 ∈ (0...3))
8054, 79ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘1) ∈ ℝ)
8180adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ)
8281rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ*)
8335, 36, 37, 38, 41, 69, 82smfpimioompt 44207 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∈ (𝑆t (𝐴𝐶)))
8414adantlr 711 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
85 smfmullem4.n . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
861, 12ssdf 42514 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
8728, 85, 86sssmfmpt 44173 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
89 0le2 12005 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 2
90 2re 11977 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
91 2lt3 12075 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 < 3
9290, 58, 91ltleii 11028 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≤ 3
9389, 92pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 2 ∧ 2 ≤ 3)
94 2z 12282 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℤ
95 elfz 13174 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3)))
9694, 55, 56, 95mp3an 1459 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3))
9793, 96mpbir 230 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ (0...3)
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 2 ∈ (0...3))
9954, 98ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘2) ∈ ℝ)
10099adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ)
101100rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ*)
102 eluzfz2 13193 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 3 ∈ (0...3))
10363, 102ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (0...3)
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 3 ∈ (0...3))
10554, 104ffvelrnd 6944 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘3) ∈ ℝ)
106105adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ)
107106rexrd 10956 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ*)
10835, 36, 37, 84, 88, 101, 107smfpimioompt 44207 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))} ∈ (𝑆t (𝐴𝐶)))
10933, 83, 108salincld 43781 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐾) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) ∈ (𝑆t (𝐴𝐶)))
11027, 109eqeltrrid 2844 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ (𝑆t (𝐴𝐶)))
111110elexd 3442 . . . . . . . . . . . . . . . 16 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ V)
11226, 111fvmpt2d 6870 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐾) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
113112eqcomd 2744 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
114113adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
115114adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
11624, 115eleqtrd 2841 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ (𝐸𝑞))
117116ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
1181173adantl3 1166 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
119118reximdva 3202 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞)))
12019, 119mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
121 eliun 4925 . . . . . . 7 (𝑥 𝑞𝐾 (𝐸𝑞) ↔ ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
122120, 121sylibr 233 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑥 𝑞𝐾 (𝐸𝑞))
1231223exp 1117 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐶) → ((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞))))
1241, 123ralrimi 3139 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
12534nfci 2889 . . . . . 6 𝑥𝐾
126 nfrab1 3310 . . . . . . . . 9 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
127125, 126nfmpt 5177 . . . . . . . 8 𝑥(𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
12825, 127nfcxfr 2904 . . . . . . 7 𝑥𝐸
129 nfcv 2906 . . . . . . 7 𝑥𝑞
130128, 129nffv 6766 . . . . . 6 𝑥(𝐸𝑞)
131125, 130nfiun 4951 . . . . 5 𝑥 𝑞𝐾 (𝐸𝑞)
132131rabssf 42557 . . . 4 ({𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
133124, 132sylibr 233 . . 3 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞))
134 ssrab2 4009 . . . . . . 7 {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ⊆ (𝐴𝐶)
135112, 134eqsstrdi 3971 . . . . . 6 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ (𝐴𝐶))
136 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ (𝐸𝑞))
137112adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
138136, 137eleqtrd 2841 . . . . . . . . . . 11 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
139 rabidim2 42541 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
140138, 139syl 17 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
141140simprd 495 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))
142140simpld 494 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)))
14349, 4eleqtrdi 2849 . . . . . . . . . . . 12 (𝑞𝐾𝑞 ∈ {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅})
144 rabidim2 42541 . . . . . . . . . . . 12 (𝑞 ∈ {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
145143, 144syl 17 . . . . . . . . . . 11 (𝑞𝐾 → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
146145ad2antlr 723 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
147 oveq1 7262 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (𝑢 · 𝑣) = (𝐵 · 𝑣))
148147breq1d 5080 . . . . . . . . . . . 12 (𝑢 = 𝐵 → ((𝑢 · 𝑣) < 𝑅 ↔ (𝐵 · 𝑣) < 𝑅))
149148ralbidv 3120 . . . . . . . . . . 11 (𝑢 = 𝐵 → (∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅))
150149rspcva 3550 . . . . . . . . . 10 ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
151142, 146, 150syl2anc 583 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
152 oveq2 7263 . . . . . . . . . . 11 (𝑣 = 𝐷 → (𝐵 · 𝑣) = (𝐵 · 𝐷))
153152breq1d 5080 . . . . . . . . . 10 (𝑣 = 𝐷 → ((𝐵 · 𝑣) < 𝑅 ↔ (𝐵 · 𝐷) < 𝑅))
154153rspcva 3550 . . . . . . . . 9 ((𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)) ∧ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
155141, 151, 154syl2anc 583 . . . . . . . 8 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 · 𝐷) < 𝑅)
156155ex 412 . . . . . . 7 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐸𝑞) → (𝐵 · 𝐷) < 𝑅))
15735, 156ralrimi 3139 . . . . . 6 ((𝜑𝑞𝐾) → ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅)
158135, 157jca 511 . . . . 5 ((𝜑𝑞𝐾) → ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
159 nfcv 2906 . . . . . 6 𝑥(𝐴𝐶)
160130, 159ssrabf 42553 . . . . 5 ((𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ↔ ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
161158, 160sylibr 233 . . . 4 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
162161iunssd 4976 . . 3 (𝜑 𝑞𝐾 (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
163133, 162eqssd 3934 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} = 𝑞𝐾 (𝐸𝑞))
164 ovex 7288 . . . . . . 7 (ℚ ↑m (0...3)) ∈ V
165 ssdomg 8741 . . . . . . 7 ((ℚ ↑m (0...3)) ∈ V → (𝐾 ⊆ (ℚ ↑m (0...3)) → 𝐾 ≼ (ℚ ↑m (0...3))))
166164, 165ax-mp 5 . . . . . 6 (𝐾 ⊆ (ℚ ↑m (0...3)) → 𝐾 ≼ (ℚ ↑m (0...3)))
16743, 166ax-mp 5 . . . . 5 𝐾 ≼ (ℚ ↑m (0...3))
168 qct 42791 . . . . . . . 8 ℚ ≼ ω
169168a1i 11 . . . . . . 7 (⊤ → ℚ ≼ ω)
170 fzfid 13621 . . . . . . 7 (⊤ → (0...3) ∈ Fin)
171169, 170mpct 42630 . . . . . 6 (⊤ → (ℚ ↑m (0...3)) ≼ ω)
172171mptru 1546 . . . . 5 (ℚ ↑m (0...3)) ≼ ω
173 domtr 8748 . . . . 5 ((𝐾 ≼ (ℚ ↑m (0...3)) ∧ (ℚ ↑m (0...3)) ≼ ω) → 𝐾 ≼ ω)
174167, 172, 173mp2an 688 . . . 4 𝐾 ≼ ω
175174a1i 11 . . 3 (𝜑𝐾 ≼ ω)
176110, 25fmptd 6970 . . . 4 (𝜑𝐸:𝐾⟶(𝑆t (𝐴𝐶)))
177176ffvelrnda 6943 . . 3 ((𝜑𝑞𝐾) → (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
17832, 175, 177saliuncl 43753 . 2 (𝜑 𝑞𝐾 (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
179163, 178eqeltrd 2839 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wtru 1540  wnf 1787  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  cin 3882  wss 3883  ifcif 4456   ciun 4921   class class class wbr 5070  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  ωcom 7687  m cmap 8573  cdom 8689  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   · cmul 10807   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  3c3 11959  cz 12249  cuz 12511  cq 12617  (,)cioo 13008  ...cfz 13168  abscabs 14873  t crest 17048  SAlgcsalg 43739  SMblFncsmblfn 44123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-ac2 10150  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-ac 9803  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-s2 14489  df-s3 14490  df-s4 14491  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rest 17050  df-salg 43740  df-smblfn 44124
This theorem is referenced by:  smfmul  44216
  Copyright terms: Public domain W3C validator