Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem4 Structured version   Visualization version   GIF version

Theorem smfmullem4 42530
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem4.x 𝑥𝜑
smfmullem4.s (𝜑𝑆 ∈ SAlg)
smfmullem4.a (𝜑𝐴𝑉)
smfmullem4.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmullem4.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmullem4.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmullem4.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfmullem4.r (𝜑𝑅 ∈ ℝ)
smfmullem4.k 𝐾 = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem4.e 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
Assertion
Ref Expression
smfmullem4 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑞,𝑢,𝑣,𝑥   𝐵,𝑞,𝑢,𝑣   𝐶,𝑞,𝑢,𝑣,𝑥   𝐷,𝑞,𝑢,𝑣   𝐾,𝑞,𝑥   𝑅,𝑞,𝑢,𝑣   𝑆,𝑞   𝜑,𝑞,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑣,𝑢)   𝐸(𝑥,𝑣,𝑢,𝑞)   𝐾(𝑣,𝑢)   𝑉(𝑥,𝑣,𝑢,𝑞)

Proof of Theorem smfmullem4
StepHypRef Expression
1 smfmullem4.x . . . . 5 𝑥𝜑
2 smfmullem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
323ad2ant1 1114 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑅 ∈ ℝ)
4 smfmullem4.k . . . . . . . . 9 𝐾 = {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
5 inss1 4087 . . . . . . . . . . . . 13 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
76sselda 3853 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
8 smfmullem4.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
97, 8syldan 583 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
1093adant3 1113 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐵 ∈ ℝ)
11 elinel2 4056 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1211adantl 474 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
13 smfmullem4.d . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 583 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
15143adant3 1113 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐷 ∈ ℝ)
16 simp3 1119 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
17 eqid 2773 . . . . . . . . 9 ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))) = ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))
18 eqid 2773 . . . . . . . . 9 if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))) = if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))))
193, 4, 10, 15, 16, 17, 18smfmullem3 42529 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
20 rabid 3312 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
2120bicomi 216 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) ↔ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2221biimpi 208 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2322adantll 702 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2423adantlr 703 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
25 smfmullem4.e . . . . . . . . . . . . . . . . 17 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2625a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}))
27 inrab 4157 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
28 smfmullem4.s . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ SAlg)
29 smfmullem4.a . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐴𝑉)
3029, 6ssexd 5081 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴𝐶) ∈ V)
31 eqid 2773 . . . . . . . . . . . . . . . . . . . . 21 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
3228, 30, 31subsalsal 42103 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
3332adantr 473 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → (𝑆t (𝐴𝐶)) ∈ SAlg)
34 nfv 1874 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑞𝐾
351, 34nfan 1863 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝜑𝑞𝐾)
3628adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → 𝑆 ∈ SAlg)
3730adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝐴𝐶) ∈ V)
389adantlr 703 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
39 smfmullem4.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4028, 39, 6sssmfmpt 42488 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4140adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
42 ssrab2 3941 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} ⊆ (ℚ ↑𝑚 (0...3))
434, 42eqsstri 3886 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐾 ⊆ (ℚ ↑𝑚 (0...3))
44 reex 10425 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ∈ V
45 qssre 12172 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℚ ⊆ ℝ
46 mapss 8250 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑𝑚 (0...3)) ⊆ (ℝ ↑𝑚 (0...3)))
4744, 45, 46mp2an 680 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ↑𝑚 (0...3)) ⊆ (ℝ ↑𝑚 (0...3))
4843, 47sstri 3862 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾 ⊆ (ℝ ↑𝑚 (0...3))
49 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾𝑞𝐾)
5048, 49sseldi 3851 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾𝑞 ∈ (ℝ ↑𝑚 (0...3)))
5144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → ℝ ∈ V)
52 ovexd 7009 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → (0...3) ∈ V)
5351, 52elmapd 8219 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾 → (𝑞 ∈ (ℝ ↑𝑚 (0...3)) ↔ 𝑞:(0...3)⟶ℝ))
5450, 53mpbid 224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾𝑞:(0...3)⟶ℝ)
55 0z 11803 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℤ
56 3z 11827 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ∈ ℤ
57 0re 10440 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ ℝ
58 3re 11519 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
59 3pos 11551 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 < 3
6057, 58, 59ltleii 10562 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ 3
6155, 56, 603pm3.2i 1320 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)
62 eluz2 12063 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3))
6361, 62mpbir 223 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ (ℤ‘0)
64 eluzfz1 12729 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 0 ∈ (0...3))
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...3)
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 0 ∈ (0...3))
6754, 66ffvelrnd 6676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘0) ∈ ℝ)
6867adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ)
6968rexrd 10489 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ*)
70 0le1 10963 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
71 1re 10438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 ∈ ℝ
72 1lt3 11619 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 3
7371, 58, 72ltleii 10562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ≤ 3
7470, 73pm3.2i 463 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 1 ∧ 1 ≤ 3)
75 1z 11824 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℤ
76 elfz 12713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3)))
7775, 55, 56, 76mp3an 1441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3))
7874, 77mpbir 223 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ (0...3)
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 1 ∈ (0...3))
8054, 79ffvelrnd 6676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘1) ∈ ℝ)
8180adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ)
8281rexrd 10489 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ*)
8335, 36, 37, 38, 41, 69, 82smfpimioompt 42522 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∈ (𝑆t (𝐴𝐶)))
8414adantlr 703 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
85 smfmullem4.n . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
861, 12ssdf 40792 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
8728, 85, 86sssmfmpt 42488 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
8887adantr 473 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
89 0le2 11548 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 2
90 2re 11513 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
91 2lt3 11618 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 < 3
9290, 58, 91ltleii 10562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≤ 3
9389, 92pm3.2i 463 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 2 ∧ 2 ≤ 3)
94 2z 11826 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℤ
95 elfz 12713 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3)))
9694, 55, 56, 95mp3an 1441 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3))
9793, 96mpbir 223 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ (0...3)
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 2 ∈ (0...3))
9954, 98ffvelrnd 6676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘2) ∈ ℝ)
10099adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ)
101100rexrd 10489 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ*)
102 eluzfz2 12730 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 3 ∈ (0...3))
10363, 102ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (0...3)
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 3 ∈ (0...3))
10554, 104ffvelrnd 6676 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘3) ∈ ℝ)
106105adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ)
107106rexrd 10489 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ*)
10835, 36, 37, 84, 88, 101, 107smfpimioompt 42522 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))} ∈ (𝑆t (𝐴𝐶)))
10933, 83, 108salincld 42096 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐾) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) ∈ (𝑆t (𝐴𝐶)))
11027, 109syl5eqelr 2866 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ (𝑆t (𝐴𝐶)))
111110elexd 3430 . . . . . . . . . . . . . . . 16 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ V)
11226, 111fvmpt2d 6606 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐾) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
113112eqcomd 2779 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
114113adantlr 703 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
115114adantr 473 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
11624, 115eleqtrd 2863 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ (𝐸𝑞))
117116ex 405 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
1181173adantl3 1149 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
119118reximdva 3214 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞)))
12019, 119mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
121 eliun 4793 . . . . . . 7 (𝑥 𝑞𝐾 (𝐸𝑞) ↔ ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
122120, 121sylibr 226 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑥 𝑞𝐾 (𝐸𝑞))
1231223exp 1100 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐶) → ((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞))))
1241, 123ralrimi 3161 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
12534nfci 2914 . . . . . 6 𝑥𝐾
126 nfrab1 3319 . . . . . . . . 9 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
127125, 126nfmpt 5021 . . . . . . . 8 𝑥(𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
12825, 127nfcxfr 2925 . . . . . . 7 𝑥𝐸
129 nfcv 2927 . . . . . . 7 𝑥𝑞
130128, 129nffv 6507 . . . . . 6 𝑥(𝐸𝑞)
131125, 130nfiun 4818 . . . . 5 𝑥 𝑞𝐾 (𝐸𝑞)
132131rabssf 40840 . . . 4 ({𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
133124, 132sylibr 226 . . 3 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞))
134 ssrab2 3941 . . . . . . 7 {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ⊆ (𝐴𝐶)
135112, 134syl6eqss 3906 . . . . . 6 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ (𝐴𝐶))
136 simpr 477 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ (𝐸𝑞))
137112adantr 473 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
138136, 137eleqtrd 2863 . . . . . . . . . . 11 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
139 rabidim2 40823 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
140138, 139syl 17 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
141140simprd 488 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))
142140simpld 487 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)))
14349, 4syl6eleq 2871 . . . . . . . . . . . 12 (𝑞𝐾𝑞 ∈ {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅})
144 rabidim2 40823 . . . . . . . . . . . 12 (𝑞 ∈ {𝑞 ∈ (ℚ ↑𝑚 (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
145143, 144syl 17 . . . . . . . . . . 11 (𝑞𝐾 → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
146145ad2antlr 715 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
147 oveq1 6982 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (𝑢 · 𝑣) = (𝐵 · 𝑣))
148147breq1d 4936 . . . . . . . . . . . 12 (𝑢 = 𝐵 → ((𝑢 · 𝑣) < 𝑅 ↔ (𝐵 · 𝑣) < 𝑅))
149148ralbidv 3142 . . . . . . . . . . 11 (𝑢 = 𝐵 → (∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅))
150149rspcva 3528 . . . . . . . . . 10 ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
151142, 146, 150syl2anc 576 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
152 oveq2 6983 . . . . . . . . . . 11 (𝑣 = 𝐷 → (𝐵 · 𝑣) = (𝐵 · 𝐷))
153152breq1d 4936 . . . . . . . . . 10 (𝑣 = 𝐷 → ((𝐵 · 𝑣) < 𝑅 ↔ (𝐵 · 𝐷) < 𝑅))
154153rspcva 3528 . . . . . . . . 9 ((𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)) ∧ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
155141, 151, 154syl2anc 576 . . . . . . . 8 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 · 𝐷) < 𝑅)
156155ex 405 . . . . . . 7 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐸𝑞) → (𝐵 · 𝐷) < 𝑅))
15735, 156ralrimi 3161 . . . . . 6 ((𝜑𝑞𝐾) → ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅)
158135, 157jca 504 . . . . 5 ((𝜑𝑞𝐾) → ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
159 nfcv 2927 . . . . . 6 𝑥(𝐴𝐶)
160130, 159ssrabf 40836 . . . . 5 ((𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ↔ ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
161158, 160sylibr 226 . . . 4 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
162161iunssd 4837 . . 3 (𝜑 𝑞𝐾 (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
163133, 162eqssd 3870 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} = 𝑞𝐾 (𝐸𝑞))
164 ovex 7007 . . . . . . 7 (ℚ ↑𝑚 (0...3)) ∈ V
165 ssdomg 8351 . . . . . . 7 ((ℚ ↑𝑚 (0...3)) ∈ V → (𝐾 ⊆ (ℚ ↑𝑚 (0...3)) → 𝐾 ≼ (ℚ ↑𝑚 (0...3))))
166164, 165ax-mp 5 . . . . . 6 (𝐾 ⊆ (ℚ ↑𝑚 (0...3)) → 𝐾 ≼ (ℚ ↑𝑚 (0...3)))
16743, 166ax-mp 5 . . . . 5 𝐾 ≼ (ℚ ↑𝑚 (0...3))
168 qct 41089 . . . . . . . 8 ℚ ≼ ω
169168a1i 11 . . . . . . 7 (⊤ → ℚ ≼ ω)
170 fzfid 13155 . . . . . . 7 (⊤ → (0...3) ∈ Fin)
171169, 170mpct 40920 . . . . . 6 (⊤ → (ℚ ↑𝑚 (0...3)) ≼ ω)
172171mptru 1515 . . . . 5 (ℚ ↑𝑚 (0...3)) ≼ ω
173 domtr 8358 . . . . 5 ((𝐾 ≼ (ℚ ↑𝑚 (0...3)) ∧ (ℚ ↑𝑚 (0...3)) ≼ ω) → 𝐾 ≼ ω)
174167, 172, 173mp2an 680 . . . 4 𝐾 ≼ ω
175174a1i 11 . . 3 (𝜑𝐾 ≼ ω)
176110, 25fmptd 6700 . . . 4 (𝜑𝐸:𝐾⟶(𝑆t (𝐴𝐶)))
177176ffvelrnda 6675 . . 3 ((𝜑𝑞𝐾) → (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
17832, 175, 177saliuncl 42068 . 2 (𝜑 𝑞𝐾 (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
179163, 178eqeltrd 2861 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wtru 1509  wnf 1747  wcel 2051  wral 3083  wrex 3084  {crab 3087  Vcvv 3410  cin 3823  wss 3824  ifcif 4345   ciun 4789   class class class wbr 4926  cmpt 5005  wf 6182  cfv 6186  (class class class)co 6975  ωcom 7395  𝑚 cmap 8205  cdom 8303  cr 10333  0cc0 10334  1c1 10335   + caddc 10337   · cmul 10339   < clt 10473  cle 10474  cmin 10669   / cdiv 11097  2c2 11494  3c3 11495  cz 11792  cuz 12057  cq 12161  (,)cioo 12553  ...cfz 12707  abscabs 14453  t crest 16549  SAlgcsalg 42054  SMblFncsmblfn 42438
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-inf2 8897  ax-cc 9654  ax-ac2 9682  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411  ax-pre-sup 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-iin 4792  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-omul 7909  df-er 8088  df-map 8207  df-pm 8208  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-sup 8700  df-inf 8701  df-oi 8768  df-card 9161  df-acn 9164  df-ac 9335  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-div 11098  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-n0 11707  df-z 11793  df-uz 12058  df-q 12162  df-rp 12204  df-ioo 12557  df-ico 12559  df-icc 12560  df-fz 12708  df-fzo 12849  df-fl 12976  df-seq 13184  df-exp 13244  df-hash 13505  df-word 13672  df-concat 13733  df-s1 13758  df-s2 14071  df-s3 14072  df-s4 14073  df-cj 14318  df-re 14319  df-im 14320  df-sqrt 14454  df-abs 14455  df-rest 16551  df-salg 42055  df-smblfn 42439
This theorem is referenced by:  smfmul  42531
  Copyright terms: Public domain W3C validator