Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmullem4 Structured version   Visualization version   GIF version

Theorem smfmullem4 46809
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmullem4.x 𝑥𝜑
smfmullem4.s (𝜑𝑆 ∈ SAlg)
smfmullem4.a (𝜑𝐴𝑉)
smfmullem4.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmullem4.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmullem4.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmullem4.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
smfmullem4.r (𝜑𝑅 ∈ ℝ)
smfmullem4.k 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
smfmullem4.e 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
Assertion
Ref Expression
smfmullem4 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Distinct variable groups:   𝐴,𝑞,𝑢,𝑣,𝑥   𝐵,𝑞,𝑢,𝑣   𝐶,𝑞,𝑢,𝑣,𝑥   𝐷,𝑞,𝑢,𝑣   𝐾,𝑞,𝑥   𝑅,𝑞,𝑢,𝑣   𝑆,𝑞   𝜑,𝑞,𝑢,𝑣
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑅(𝑥)   𝑆(𝑥,𝑣,𝑢)   𝐸(𝑥,𝑣,𝑢,𝑞)   𝐾(𝑣,𝑢)   𝑉(𝑥,𝑣,𝑢,𝑞)

Proof of Theorem smfmullem4
StepHypRef Expression
1 smfmullem4.x . . . . 5 𝑥𝜑
2 smfmullem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ ℝ)
323ad2ant1 1134 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑅 ∈ ℝ)
4 smfmullem4.k . . . . . . . . 9 𝐾 = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅}
5 inss1 4237 . . . . . . . . . . . . 13 (𝐴𝐶) ⊆ 𝐴
65a1i 11 . . . . . . . . . . . 12 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
76sselda 3983 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
8 smfmullem4.b . . . . . . . . . . 11 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
97, 8syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
1093adant3 1133 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐵 ∈ ℝ)
11 elinel2 4202 . . . . . . . . . . . 12 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1211adantl 481 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
13 smfmullem4.d . . . . . . . . . . 11 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
1412, 13syldan 591 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
15143adant3 1133 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝐷 ∈ ℝ)
16 simp3 1139 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
17 eqid 2737 . . . . . . . . 9 ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))) = ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))
18 eqid 2737 . . . . . . . . 9 if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷))))) = if(1 ≤ ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))), 1, ((𝑅 − (𝐵 · 𝐷)) / (1 + ((abs‘𝐵) + (abs‘𝐷)))))
193, 4, 10, 15, 16, 17, 18smfmullem3 46808 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
20 rabid 3458 . . . . . . . . . . . . . . . 16 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ↔ (𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))))
2120bicomi 224 . . . . . . . . . . . . . . 15 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) ↔ 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2221biimpi 216 . . . . . . . . . . . . . 14 ((𝑥 ∈ (𝐴𝐶) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2322adantll 714 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2423adantlr 715 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
25 smfmullem4.e . . . . . . . . . . . . . . . . 17 𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
2625a1i 11 . . . . . . . . . . . . . . . 16 (𝜑𝐸 = (𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}))
27 inrab 4316 . . . . . . . . . . . . . . . . . 18 ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
28 smfmullem4.s . . . . . . . . . . . . . . . . . . . . 21 (𝜑𝑆 ∈ SAlg)
29 smfmullem4.a . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐴𝑉)
3029, 6ssexd 5324 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴𝐶) ∈ V)
31 eqid 2737 . . . . . . . . . . . . . . . . . . . . 21 (𝑆t (𝐴𝐶)) = (𝑆t (𝐴𝐶))
3228, 30, 31subsalsal 46374 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑆t (𝐴𝐶)) ∈ SAlg)
3332adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → (𝑆t (𝐴𝐶)) ∈ SAlg)
34 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑥 𝑞𝐾
351, 34nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑥(𝜑𝑞𝐾)
3628adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → 𝑆 ∈ SAlg)
3730adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝐴𝐶) ∈ V)
389adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
39 smfmullem4.m . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
4028, 39, 6sssmfmpt 46765 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
4140adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐵) ∈ (SMblFn‘𝑆))
42 ssrab2 4080 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} ⊆ (ℚ ↑m (0...3))
434, 42eqsstri 4030 . . . . . . . . . . . . . . . . . . . . . . . . . 26 𝐾 ⊆ (ℚ ↑m (0...3))
44 reex 11246 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℝ ∈ V
45 qssre 13001 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ℚ ⊆ ℝ
46 mapss 8929 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((ℝ ∈ V ∧ ℚ ⊆ ℝ) → (ℚ ↑m (0...3)) ⊆ (ℝ ↑m (0...3)))
4744, 45, 46mp2an 692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (ℚ ↑m (0...3)) ⊆ (ℝ ↑m (0...3))
4843, 47sstri 3993 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝐾 ⊆ (ℝ ↑m (0...3))
49 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾𝑞𝐾)
5048, 49sselid 3981 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾𝑞 ∈ (ℝ ↑m (0...3)))
5144a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → ℝ ∈ V)
52 ovexd 7466 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑞𝐾 → (0...3) ∈ V)
5351, 52elmapd 8880 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑞𝐾 → (𝑞 ∈ (ℝ ↑m (0...3)) ↔ 𝑞:(0...3)⟶ℝ))
5450, 53mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾𝑞:(0...3)⟶ℝ)
55 0z 12624 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ∈ ℤ
56 3z 12650 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3 ∈ ℤ
57 0re 11263 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 ∈ ℝ
58 3re 12346 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 ∈ ℝ
59 3pos 12371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 0 < 3
6057, 58, 59ltleii 11384 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 0 ≤ 3
6155, 56, 603pm3.2i 1340 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3)
62 eluz2 12884 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (3 ∈ (ℤ‘0) ↔ (0 ∈ ℤ ∧ 3 ∈ ℤ ∧ 0 ≤ 3))
6361, 62mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . . 25 3 ∈ (ℤ‘0)
64 eluzfz1 13571 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 0 ∈ (0...3))
6563, 64ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 0 ∈ (0...3)
6665a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 0 ∈ (0...3))
6754, 66ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘0) ∈ ℝ)
6867adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ)
6968rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘0) ∈ ℝ*)
70 0le1 11786 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 1
71 1re 11261 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 ∈ ℝ
72 1lt3 12439 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 1 < 3
7371, 58, 72ltleii 11384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ≤ 3
7470, 73pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 1 ∧ 1 ≤ 3)
75 1z 12647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 1 ∈ ℤ
76 elfz 13553 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((1 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3)))
7775, 55, 56, 76mp3an 1463 . . . . . . . . . . . . . . . . . . . . . . . . 25 (1 ∈ (0...3) ↔ (0 ≤ 1 ∧ 1 ≤ 3))
7874, 77mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 1 ∈ (0...3)
7978a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 1 ∈ (0...3))
8054, 79ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘1) ∈ ℝ)
8180adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ)
8281rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘1) ∈ ℝ*)
8335, 36, 37, 38, 41, 69, 82smfpimioompt 46801 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∈ (𝑆t (𝐴𝐶)))
8414adantlr 715 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
85 smfmullem4.n . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
861, 12ssdf 45080 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝐴𝐶) ⊆ 𝐶)
8728, 85, 86sssmfmpt 46765 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
8887adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐴𝐶) ↦ 𝐷) ∈ (SMblFn‘𝑆))
89 0le2 12368 . . . . . . . . . . . . . . . . . . . . . . . . . 26 0 ≤ 2
90 2re 12340 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 ∈ ℝ
91 2lt3 12438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2 < 3
9290, 58, 91ltleii 11384 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ≤ 3
9389, 92pm3.2i 470 . . . . . . . . . . . . . . . . . . . . . . . . 25 (0 ≤ 2 ∧ 2 ≤ 3)
94 2z 12649 . . . . . . . . . . . . . . . . . . . . . . . . . 26 2 ∈ ℤ
95 elfz 13553 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((2 ∈ ℤ ∧ 0 ∈ ℤ ∧ 3 ∈ ℤ) → (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3)))
9694, 55, 56, 95mp3an 1463 . . . . . . . . . . . . . . . . . . . . . . . . 25 (2 ∈ (0...3) ↔ (0 ≤ 2 ∧ 2 ≤ 3))
9793, 96mpbir 231 . . . . . . . . . . . . . . . . . . . . . . . 24 2 ∈ (0...3)
9897a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 2 ∈ (0...3))
9954, 98ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘2) ∈ ℝ)
10099adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ)
101100rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘2) ∈ ℝ*)
102 eluzfz2 13572 . . . . . . . . . . . . . . . . . . . . . . . . 25 (3 ∈ (ℤ‘0) → 3 ∈ (0...3))
10363, 102ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . 24 3 ∈ (0...3)
104103a1i 11 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑞𝐾 → 3 ∈ (0...3))
10554, 104ffvelcdmd 7105 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞𝐾 → (𝑞‘3) ∈ ℝ)
106105adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ)
107106rexrd 11311 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑞𝐾) → (𝑞‘3) ∈ ℝ*)
10835, 36, 37, 84, 88, 101, 107smfpimioompt 46801 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))} ∈ (𝑆t (𝐴𝐶)))
10933, 83, 108salincld 46367 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑞𝐾) → ({𝑥 ∈ (𝐴𝐶) ∣ 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1))} ∩ {𝑥 ∈ (𝐴𝐶) ∣ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))}) ∈ (𝑆t (𝐴𝐶)))
11027, 109eqeltrrid 2846 . . . . . . . . . . . . . . . . 17 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ (𝑆t (𝐴𝐶)))
111110elexd 3504 . . . . . . . . . . . . . . . 16 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ∈ V)
11226, 111fvmpt2d 7029 . . . . . . . . . . . . . . 15 ((𝜑𝑞𝐾) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
113112eqcomd 2743 . . . . . . . . . . . . . 14 ((𝜑𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
114113adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
115114adantr 480 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} = (𝐸𝑞))
11624, 115eleqtrd 2843 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) ∧ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))) → 𝑥 ∈ (𝐸𝑞))
117116ex 412 . . . . . . . . . 10 (((𝜑𝑥 ∈ (𝐴𝐶)) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
1181173adantl3 1169 . . . . . . . . 9 (((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) ∧ 𝑞𝐾) → ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → 𝑥 ∈ (𝐸𝑞)))
119118reximdva 3168 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → (∃𝑞𝐾 (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞)))
12019, 119mpd 15 . . . . . . 7 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
121 eliun 4995 . . . . . . 7 (𝑥 𝑞𝐾 (𝐸𝑞) ↔ ∃𝑞𝐾 𝑥 ∈ (𝐸𝑞))
122120, 121sylibr 234 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶) ∧ (𝐵 · 𝐷) < 𝑅) → 𝑥 𝑞𝐾 (𝐸𝑞))
1231223exp 1120 . . . . 5 (𝜑 → (𝑥 ∈ (𝐴𝐶) → ((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞))))
1241, 123ralrimi 3257 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
12534nfci 2893 . . . . . 6 𝑥𝐾
126 nfrab1 3457 . . . . . . . . 9 𝑥{𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}
127125, 126nfmpt 5249 . . . . . . . 8 𝑥(𝑞𝐾 ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
12825, 127nfcxfr 2903 . . . . . . 7 𝑥𝐸
129 nfcv 2905 . . . . . . 7 𝑥𝑞
130128, 129nffv 6916 . . . . . 6 𝑥(𝐸𝑞)
131125, 130nfiun 5023 . . . . 5 𝑥 𝑞𝐾 (𝐸𝑞)
132131rabssf 45124 . . . 4 ({𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞) ↔ ∀𝑥 ∈ (𝐴𝐶)((𝐵 · 𝐷) < 𝑅𝑥 𝑞𝐾 (𝐸𝑞)))
133124, 132sylibr 234 . . 3 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ⊆ 𝑞𝐾 (𝐸𝑞))
134 ssrab2 4080 . . . . . . 7 {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} ⊆ (𝐴𝐶)
135112, 134eqsstrdi 4028 . . . . . 6 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ (𝐴𝐶))
136 simpr 484 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ (𝐸𝑞))
137112adantr 480 . . . . . . . . . . . 12 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐸𝑞) = {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
138136, 137eleqtrd 2843 . . . . . . . . . . 11 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
139 rabidim2 45107 . . . . . . . . . . 11 (𝑥 ∈ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))} → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
140138, 139syl 17 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3))))
141140simprd 495 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))
142140simpld 494 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → 𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)))
14349, 4eleqtrdi 2851 . . . . . . . . . . . 12 (𝑞𝐾𝑞 ∈ {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅})
144 rabidim2 45107 . . . . . . . . . . . 12 (𝑞 ∈ {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅} → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
145143, 144syl 17 . . . . . . . . . . 11 (𝑞𝐾 → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
146145ad2antlr 727 . . . . . . . . . 10 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅)
147 oveq1 7438 . . . . . . . . . . . . 13 (𝑢 = 𝐵 → (𝑢 · 𝑣) = (𝐵 · 𝑣))
148147breq1d 5153 . . . . . . . . . . . 12 (𝑢 = 𝐵 → ((𝑢 · 𝑣) < 𝑅 ↔ (𝐵 · 𝑣) < 𝑅))
149148ralbidv 3178 . . . . . . . . . . 11 (𝑢 = 𝐵 → (∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅))
150149rspcva 3620 . . . . . . . . . 10 ((𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑅) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
151142, 146, 150syl2anc 584 . . . . . . . . 9 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅)
152 oveq2 7439 . . . . . . . . . . 11 (𝑣 = 𝐷 → (𝐵 · 𝑣) = (𝐵 · 𝐷))
153152breq1d 5153 . . . . . . . . . 10 (𝑣 = 𝐷 → ((𝐵 · 𝑣) < 𝑅 ↔ (𝐵 · 𝐷) < 𝑅))
154153rspcva 3620 . . . . . . . . 9 ((𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)) ∧ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝐵 · 𝑣) < 𝑅) → (𝐵 · 𝐷) < 𝑅)
155141, 151, 154syl2anc 584 . . . . . . . 8 (((𝜑𝑞𝐾) ∧ 𝑥 ∈ (𝐸𝑞)) → (𝐵 · 𝐷) < 𝑅)
156155ex 412 . . . . . . 7 ((𝜑𝑞𝐾) → (𝑥 ∈ (𝐸𝑞) → (𝐵 · 𝐷) < 𝑅))
15735, 156ralrimi 3257 . . . . . 6 ((𝜑𝑞𝐾) → ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅)
158135, 157jca 511 . . . . 5 ((𝜑𝑞𝐾) → ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
159 nfcv 2905 . . . . . 6 𝑥(𝐴𝐶)
160130, 159ssrabf 45119 . . . . 5 ((𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ↔ ((𝐸𝑞) ⊆ (𝐴𝐶) ∧ ∀𝑥 ∈ (𝐸𝑞)(𝐵 · 𝐷) < 𝑅))
161158, 160sylibr 234 . . . 4 ((𝜑𝑞𝐾) → (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
162161iunssd 5050 . . 3 (𝜑 𝑞𝐾 (𝐸𝑞) ⊆ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅})
163133, 162eqssd 4001 . 2 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} = 𝑞𝐾 (𝐸𝑞))
164 ovex 7464 . . . . . . 7 (ℚ ↑m (0...3)) ∈ V
165 ssdomg 9040 . . . . . . 7 ((ℚ ↑m (0...3)) ∈ V → (𝐾 ⊆ (ℚ ↑m (0...3)) → 𝐾 ≼ (ℚ ↑m (0...3))))
166164, 165ax-mp 5 . . . . . 6 (𝐾 ⊆ (ℚ ↑m (0...3)) → 𝐾 ≼ (ℚ ↑m (0...3)))
16743, 166ax-mp 5 . . . . 5 𝐾 ≼ (ℚ ↑m (0...3))
168 qct 45373 . . . . . . . 8 ℚ ≼ ω
169168a1i 11 . . . . . . 7 (⊤ → ℚ ≼ ω)
170 fzfid 14014 . . . . . . 7 (⊤ → (0...3) ∈ Fin)
171169, 170mpct 45206 . . . . . 6 (⊤ → (ℚ ↑m (0...3)) ≼ ω)
172171mptru 1547 . . . . 5 (ℚ ↑m (0...3)) ≼ ω
173 domtr 9047 . . . . 5 ((𝐾 ≼ (ℚ ↑m (0...3)) ∧ (ℚ ↑m (0...3)) ≼ ω) → 𝐾 ≼ ω)
174167, 172, 173mp2an 692 . . . 4 𝐾 ≼ ω
175174a1i 11 . . 3 (𝜑𝐾 ≼ ω)
176110, 25fmptd 7134 . . . 4 (𝜑𝐸:𝐾⟶(𝑆t (𝐴𝐶)))
177176ffvelcdmda 7104 . . 3 ((𝜑𝑞𝐾) → (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
17832, 175, 177saliuncl 46338 . 2 (𝜑 𝑞𝐾 (𝐸𝑞) ∈ (𝑆t (𝐴𝐶)))
179163, 178eqeltrd 2841 1 (𝜑 → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑅} ∈ (𝑆t (𝐴𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wtru 1541  wnf 1783  wcel 2108  wral 3061  wrex 3070  {crab 3436  Vcvv 3480  cin 3950  wss 3951  ifcif 4525   ciun 4991   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  ωcom 7887  m cmap 8866  cdom 8983  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  3c3 12322  cz 12613  cuz 12878  cq 12990  (,)cioo 13387  ...cfz 13547  abscabs 15273  t crest 17465  SAlgcsalg 46323  SMblFncsmblfn 46710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-ac2 10503  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-ac 10156  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-seq 14043  df-exp 14103  df-hash 14370  df-word 14553  df-concat 14609  df-s1 14634  df-s2 14887  df-s3 14888  df-s4 14889  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rest 17467  df-salg 46324  df-smblfn 46711
This theorem is referenced by:  smfmul  46810
  Copyright terms: Public domain W3C validator