Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmul Structured version   Visualization version   GIF version

Theorem smfmul 46416
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmul.x 𝑥𝜑
smfmul.s (𝜑𝑆 ∈ SAlg)
smfmul.a (𝜑𝐴𝑉)
smfmul.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmul.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmul.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmul.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfmul (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfmul
Dummy variables 𝑎 𝑝 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmul.x . 2 𝑥𝜑
2 nfv 1910 . 2 𝑎𝜑
3 smfmul.s . 2 (𝜑𝑆 ∈ SAlg)
4 elinel1 4196 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
54adantl 480 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
61, 5ssdf 44676 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 eqid 2726 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfmul.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 44831 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2732 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfmul.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2726 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 46354 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 4018 . . 3 (𝜑𝐴 𝑆)
156, 14sstrd 3990 . 2 (𝜑 → (𝐴𝐶) ⊆ 𝑆)
165, 8syldan 589 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
17 elinel2 4197 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1817adantl 480 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
19 smfmul.d . . . 4 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
2018, 19syldan 589 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
2116, 20remulcld 11294 . 2 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 · 𝐷) ∈ ℝ)
22 nfv 1910 . . . 4 𝑥 𝑎 ∈ ℝ
231, 22nfan 1895 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
243adantr 479 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
25 smfmul.a . . . 4 (𝜑𝐴𝑉)
2625adantr 479 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
278adantlr 713 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
2819adantlr 713 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐷 ∈ ℝ)
2911adantr 479 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
30 smfmul.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
3130adantr 479 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
32 simpr 483 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
33 fveq1 6900 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2))
34 fveq1 6900 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3))
3533, 34oveq12d 7442 . . . . . . 7 (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3)))
3635raleqdv 3315 . . . . . 6 (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
3736ralbidv 3168 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
38 fveq1 6900 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0))
39 fveq1 6900 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1))
4038, 39oveq12d 7442 . . . . . 6 (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1)))
4140raleqdv 3315 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4237, 41bitrd 278 . . . 4 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4342cbvrabv 3430 . . 3 {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎}
44 eqid 2726 . . 3 (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
4523, 24, 26, 27, 28, 29, 31, 32, 43, 44smfmullem4 46415 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆t (𝐴𝐶)))
461, 2, 3, 15, 21, 45issmfdmpt 46369 1 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wnf 1778  wcel 2099  wral 3051  {crab 3419  cin 3946   cuni 4913   class class class wbr 5153  cmpt 5236  dom cdm 5682  cfv 6554  (class class class)co 7424  m cmap 8855  cr 11157  0cc0 11158  1c1 11159   · cmul 11163   < clt 11298  2c2 12319  3c3 12320  cq 12984  (,)cioo 13378  ...cfz 13538  SAlgcsalg 45929  SMblFncsmblfn 46316
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9684  ax-cc 10478  ax-ac2 10506  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235  ax-pre-sup 11236
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-iin 5004  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-isom 6563  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-omul 8501  df-er 8734  df-map 8857  df-pm 8858  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-sup 9485  df-inf 9486  df-oi 9553  df-card 9982  df-acn 9985  df-ac 10159  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-div 11922  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12611  df-uz 12875  df-q 12985  df-rp 13029  df-ioo 13382  df-ico 13384  df-icc 13385  df-fz 13539  df-fzo 13682  df-fl 13812  df-seq 14022  df-exp 14082  df-hash 14348  df-word 14523  df-concat 14579  df-s1 14604  df-s2 14857  df-s3 14858  df-s4 14859  df-cj 15104  df-re 15105  df-im 15106  df-sqrt 15240  df-abs 15241  df-rest 17437  df-salg 45930  df-smblfn 46317
This theorem is referenced by:  smfmulc1  46417  smfdiv  46418
  Copyright terms: Public domain W3C validator