| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfmul | Structured version Visualization version GIF version | ||
| Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| smfmul.x | ⊢ Ⅎ𝑥𝜑 |
| smfmul.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| smfmul.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| smfmul.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
| smfmul.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| smfmul.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
| Ref | Expression |
|---|---|
| smfmul | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfmul.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 3 | smfmul.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | elinel1 4167 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐴) |
| 6 | 1, 5 | ssdf 45076 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
| 7 | eqid 2730 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 8 | smfmul.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 9 | 1, 7, 8 | dmmptdf 45225 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
| 10 | 9 | eqcomd 2736 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
| 11 | smfmul.m | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 12 | eqid 2730 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 13 | 3, 11, 12 | smfdmss 46738 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ∪ 𝑆) |
| 14 | 10, 13 | eqsstrd 3984 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
| 15 | 6, 14 | sstrd 3960 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ ∪ 𝑆) |
| 16 | 5, 8 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ ℝ) |
| 17 | elinel2 4168 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐶) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐶) |
| 19 | smfmul.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
| 20 | 18, 19 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐷 ∈ ℝ) |
| 21 | 16, 20 | remulcld 11211 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → (𝐵 · 𝐷) ∈ ℝ) |
| 22 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
| 23 | 1, 22 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
| 24 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
| 25 | smfmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
| 27 | 8 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| 28 | 19 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
| 29 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
| 30 | smfmul.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 33 | fveq1 6860 | . . . . . . . 8 ⊢ (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2)) | |
| 34 | fveq1 6860 | . . . . . . . 8 ⊢ (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3)) | |
| 35 | 33, 34 | oveq12d 7408 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3))) |
| 36 | 35 | raleqdv 3301 | . . . . . 6 ⊢ (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
| 37 | 36 | ralbidv 3157 | . . . . 5 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
| 38 | fveq1 6860 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0)) | |
| 39 | fveq1 6860 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1)) | |
| 40 | 38, 39 | oveq12d 7408 | . . . . . 6 ⊢ (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1))) |
| 41 | 40 | raleqdv 3301 | . . . . 5 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
| 42 | 37, 41 | bitrd 279 | . . . 4 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
| 43 | 42 | cbvrabv 3419 | . . 3 ⊢ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎} |
| 44 | eqid 2730 | . . 3 ⊢ (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) | |
| 45 | 23, 24, 26, 27, 28, 29, 31, 32, 43, 44 | smfmullem4 46799 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) |
| 46 | 1, 2, 3, 15, 21, 45 | issmfdmpt 46753 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∩ cin 3916 ∪ cuni 4874 class class class wbr 5110 ↦ cmpt 5191 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 ↑m cmap 8802 ℝcr 11074 0cc0 11075 1c1 11076 · cmul 11080 < clt 11215 2c2 12248 3c3 12249 ℚcq 12914 (,)cioo 13313 ...cfz 13475 SAlgcsalg 46313 SMblFncsmblfn 46700 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cc 10395 ax-ac2 10423 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-omul 8442 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-oi 9470 df-card 9899 df-acn 9902 df-ac 10076 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-seq 13974 df-exp 14034 df-hash 14303 df-word 14486 df-concat 14543 df-s1 14568 df-s2 14821 df-s3 14822 df-s4 14823 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-rest 17392 df-salg 46314 df-smblfn 46701 |
| This theorem is referenced by: smfmulc1 46801 smfdiv 46802 |
| Copyright terms: Public domain | W3C validator |