|   | Mathbox for Glauco Siliprandi | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfmul | Structured version Visualization version GIF version | ||
| Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) | 
| Ref | Expression | 
|---|---|
| smfmul.x | ⊢ Ⅎ𝑥𝜑 | 
| smfmul.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) | 
| smfmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| smfmul.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| smfmul.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | 
| smfmul.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | 
| smfmul.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | 
| Ref | Expression | 
|---|---|
| smfmul | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | smfmul.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑎𝜑 | |
| 3 | smfmul.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 4 | elinel1 4201 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐴) | |
| 5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐴) | 
| 6 | 1, 5 | ssdf 45080 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) | 
| 7 | eqid 2737 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 8 | smfmul.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 9 | 1, 7, 8 | dmmptdf 45229 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) | 
| 10 | 9 | eqcomd 2743 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) | 
| 11 | smfmul.m | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
| 12 | eqid 2737 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 13 | 3, 11, 12 | smfdmss 46748 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ∪ 𝑆) | 
| 14 | 10, 13 | eqsstrd 4018 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) | 
| 15 | 6, 14 | sstrd 3994 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ ∪ 𝑆) | 
| 16 | 5, 8 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ ℝ) | 
| 17 | elinel2 4202 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐶) | |
| 18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐶) | 
| 19 | smfmul.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
| 20 | 18, 19 | syldan 591 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐷 ∈ ℝ) | 
| 21 | 16, 20 | remulcld 11291 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → (𝐵 · 𝐷) ∈ ℝ) | 
| 22 | nfv 1914 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
| 23 | 1, 22 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) | 
| 24 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) | 
| 25 | smfmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) | 
| 27 | 8 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | 
| 28 | 19 | adantlr 715 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | 
| 29 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | 
| 30 | smfmul.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
| 31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | 
| 32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
| 33 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2)) | |
| 34 | fveq1 6905 | . . . . . . . 8 ⊢ (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3)) | |
| 35 | 33, 34 | oveq12d 7449 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3))) | 
| 36 | 35 | raleqdv 3326 | . . . . . 6 ⊢ (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) | 
| 37 | 36 | ralbidv 3178 | . . . . 5 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) | 
| 38 | fveq1 6905 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0)) | |
| 39 | fveq1 6905 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1)) | |
| 40 | 38, 39 | oveq12d 7449 | . . . . . 6 ⊢ (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1))) | 
| 41 | 40 | raleqdv 3326 | . . . . 5 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) | 
| 42 | 37, 41 | bitrd 279 | . . . 4 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) | 
| 43 | 42 | cbvrabv 3447 | . . 3 ⊢ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎} | 
| 44 | eqid 2737 | . . 3 ⊢ (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) | |
| 45 | 23, 24, 26, 27, 28, 29, 31, 32, 43, 44 | smfmullem4 46809 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) | 
| 46 | 1, 2, 3, 15, 21, 45 | issmfdmpt 46763 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3061 {crab 3436 ∩ cin 3950 ∪ cuni 4907 class class class wbr 5143 ↦ cmpt 5225 dom cdm 5685 ‘cfv 6561 (class class class)co 7431 ↑m cmap 8866 ℝcr 11154 0cc0 11155 1c1 11156 · cmul 11160 < clt 11295 2c2 12321 3c3 12322 ℚcq 12990 (,)cioo 13387 ...cfz 13547 SAlgcsalg 46323 SMblFncsmblfn 46710 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-ac2 10503 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8014 df-2nd 8015 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-ac 10156 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-n0 12527 df-z 12614 df-uz 12879 df-q 12991 df-rp 13035 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-word 14553 df-concat 14609 df-s1 14634 df-s2 14887 df-s3 14888 df-s4 14889 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-rest 17467 df-salg 46324 df-smblfn 46711 | 
| This theorem is referenced by: smfmulc1 46811 smfdiv 46812 | 
| Copyright terms: Public domain | W3C validator |