Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfmul | Structured version Visualization version GIF version |
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfmul.x | ⊢ Ⅎ𝑥𝜑 |
smfmul.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfmul.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfmul.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
smfmul.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
smfmul.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfmul.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
Ref | Expression |
---|---|
smfmul | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfmul.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | smfmul.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | elinel1 4125 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐴) | |
5 | 4 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐴) |
6 | 1, 5 | ssdf 42514 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
7 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
8 | smfmul.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
9 | 1, 7, 8 | dmmptdf 42652 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
10 | 9 | eqcomd 2744 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | smfmul.m | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
12 | eqid 2738 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
13 | 3, 11, 12 | smfdmss 44156 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ∪ 𝑆) |
14 | 10, 13 | eqsstrd 3955 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
15 | 6, 14 | sstrd 3927 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ ∪ 𝑆) |
16 | 5, 8 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ ℝ) |
17 | elinel2 4126 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐶) | |
18 | 17 | adantl 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐶) |
19 | smfmul.d | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
20 | 18, 19 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐷 ∈ ℝ) |
21 | 16, 20 | remulcld 10936 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → (𝐵 · 𝐷) ∈ ℝ) |
22 | nfv 1918 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
23 | 1, 22 | nfan 1903 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
24 | 3 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
25 | smfmul.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
27 | 8 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
28 | 19 | adantlr 711 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
29 | 11 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
30 | smfmul.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
31 | 30 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
32 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
33 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2)) | |
34 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3)) | |
35 | 33, 34 | oveq12d 7273 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3))) |
36 | 35 | raleqdv 3339 | . . . . . 6 ⊢ (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
37 | 36 | ralbidv 3120 | . . . . 5 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
38 | fveq1 6755 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0)) | |
39 | fveq1 6755 | . . . . . . 7 ⊢ (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1)) | |
40 | 38, 39 | oveq12d 7273 | . . . . . 6 ⊢ (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1))) |
41 | 40 | raleqdv 3339 | . . . . 5 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
42 | 37, 41 | bitrd 278 | . . . 4 ⊢ (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎)) |
43 | 42 | cbvrabv 3416 | . . 3 ⊢ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎} |
44 | eqid 2738 | . . 3 ⊢ (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) | |
45 | 23, 24, 26, 27, 28, 29, 31, 32, 43, 44 | smfmullem4 44215 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) |
46 | 1, 2, 3, 15, 21, 45 | issmfdmpt 44171 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 ∀wral 3063 {crab 3067 ∩ cin 3882 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 ℝcr 10801 0cc0 10802 1c1 10803 · cmul 10807 < clt 10940 2c2 11958 3c3 11959 ℚcq 12617 (,)cioo 13008 ...cfz 13168 SAlgcsalg 43739 SMblFncsmblfn 44123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-ac2 10150 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-oi 9199 df-card 9628 df-acn 9631 df-ac 9803 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-rp 12660 df-ioo 13012 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-seq 13650 df-exp 13711 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-s2 14489 df-s3 14490 df-s4 14491 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-rest 17050 df-salg 43740 df-smblfn 44124 |
This theorem is referenced by: smfmulc1 44217 smfdiv 44218 |
Copyright terms: Public domain | W3C validator |