Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfmul Structured version   Visualization version   GIF version

Theorem smfmul 43944
Description: The multiplication of two sigma-measurable functions is measurable. Proposition 121E (d) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfmul.x 𝑥𝜑
smfmul.s (𝜑𝑆 ∈ SAlg)
smfmul.a (𝜑𝐴𝑉)
smfmul.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfmul.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfmul.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfmul.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfmul (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfmul
Dummy variables 𝑎 𝑝 𝑞 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfmul.x . 2 𝑥𝜑
2 nfv 1922 . 2 𝑎𝜑
3 smfmul.s . 2 (𝜑𝑆 ∈ SAlg)
4 elinel1 4095 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
54adantl 485 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
61, 5ssdf 42239 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 eqid 2736 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfmul.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 42377 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2742 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfmul.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2736 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 43884 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3925 . . 3 (𝜑𝐴 𝑆)
156, 14sstrd 3897 . 2 (𝜑 → (𝐴𝐶) ⊆ 𝑆)
165, 8syldan 594 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
17 elinel2 4096 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1817adantl 485 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
19 smfmul.d . . . 4 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
2018, 19syldan 594 . . 3 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
2116, 20remulcld 10828 . 2 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 · 𝐷) ∈ ℝ)
22 nfv 1922 . . . 4 𝑥 𝑎 ∈ ℝ
231, 22nfan 1907 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
243adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
25 smfmul.a . . . 4 (𝜑𝐴𝑉)
2625adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
278adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
2819adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐷 ∈ ℝ)
2911adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
30 smfmul.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
3130adantr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
32 simpr 488 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
33 fveq1 6694 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘2) = (𝑞‘2))
34 fveq1 6694 . . . . . . . 8 (𝑝 = 𝑞 → (𝑝‘3) = (𝑞‘3))
3533, 34oveq12d 7209 . . . . . . 7 (𝑝 = 𝑞 → ((𝑝‘2)(,)(𝑝‘3)) = ((𝑞‘2)(,)(𝑞‘3)))
3635raleqdv 3315 . . . . . 6 (𝑝 = 𝑞 → (∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
3736ralbidv 3108 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
38 fveq1 6694 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘0) = (𝑞‘0))
39 fveq1 6694 . . . . . . 7 (𝑝 = 𝑞 → (𝑝‘1) = (𝑞‘1))
4038, 39oveq12d 7209 . . . . . 6 (𝑝 = 𝑞 → ((𝑝‘0)(,)(𝑝‘1)) = ((𝑞‘0)(,)(𝑞‘1)))
4140raleqdv 3315 . . . . 5 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4237, 41bitrd 282 . . . 4 (𝑝 = 𝑞 → (∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎 ↔ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎))
4342cbvrabv 3392 . . 3 {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} = {𝑞 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑞‘0)(,)(𝑞‘1))∀𝑣 ∈ ((𝑞‘2)(,)(𝑞‘3))(𝑢 · 𝑣) < 𝑎}
44 eqid 2736 . . 3 (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))}) = (𝑞 ∈ {𝑝 ∈ (ℚ ↑m (0...3)) ∣ ∀𝑢 ∈ ((𝑝‘0)(,)(𝑝‘1))∀𝑣 ∈ ((𝑝‘2)(,)(𝑝‘3))(𝑢 · 𝑣) < 𝑎} ↦ {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 ∈ ((𝑞‘0)(,)(𝑞‘1)) ∧ 𝐷 ∈ ((𝑞‘2)(,)(𝑞‘3)))})
4523, 24, 26, 27, 28, 29, 31, 32, 43, 44smfmullem4 43943 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 · 𝐷) < 𝑎} ∈ (𝑆t (𝐴𝐶)))
461, 2, 3, 15, 21, 45issmfdmpt 43899 1 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 · 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wnf 1791  wcel 2112  wral 3051  {crab 3055  cin 3852   cuni 4805   class class class wbr 5039  cmpt 5120  dom cdm 5536  cfv 6358  (class class class)co 7191  m cmap 8486  cr 10693  0cc0 10694  1c1 10695   · cmul 10699   < clt 10832  2c2 11850  3c3 11851  cq 12509  (,)cioo 12900  ...cfz 13060  SAlgcsalg 43467  SMblFncsmblfn 43851
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-inf2 9234  ax-cc 10014  ax-ac2 10042  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-iin 4893  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-se 5495  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-oadd 8184  df-omul 8185  df-er 8369  df-map 8488  df-pm 8489  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-oi 9104  df-card 9520  df-acn 9523  df-ac 9695  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-n0 12056  df-z 12142  df-uz 12404  df-q 12510  df-rp 12552  df-ioo 12904  df-ico 12906  df-icc 12907  df-fz 13061  df-fzo 13204  df-fl 13332  df-seq 13540  df-exp 13601  df-hash 13862  df-word 14035  df-concat 14091  df-s1 14118  df-s2 14378  df-s3 14379  df-s4 14380  df-cj 14627  df-re 14628  df-im 14629  df-sqrt 14763  df-abs 14764  df-rest 16881  df-salg 43468  df-smblfn 43852
This theorem is referenced by:  smfmulc1  43945  smfdiv  43946
  Copyright terms: Public domain W3C validator