Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfadd Structured version   Visualization version   GIF version

Theorem smfadd 46782
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Hypotheses
Ref Expression
smfadd.x 𝑥𝜑
smfadd.s (𝜑𝑆 ∈ SAlg)
smfadd.a (𝜑𝐴𝑉)
smfadd.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
smfadd.d ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
smfadd.m (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
smfadd.n (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
Assertion
Ref Expression
smfadd (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝑉(𝑥)

Proof of Theorem smfadd
Dummy variables 𝑎 𝑝 𝑞 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 smfadd.x . 2 𝑥𝜑
2 nfv 1915 . 2 𝑎𝜑
3 smfadd.s . 2 (𝜑𝑆 ∈ SAlg)
4 elinel1 4149 . . . . 5 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐴)
54adantl 481 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐴)
61, 5ssdf 45091 . . 3 (𝜑 → (𝐴𝐶) ⊆ 𝐴)
7 eqid 2730 . . . . . 6 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
8 smfadd.b . . . . . 6 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
91, 7, 8dmmptdf 45240 . . . . 5 (𝜑 → dom (𝑥𝐴𝐵) = 𝐴)
109eqcomd 2736 . . . 4 (𝜑𝐴 = dom (𝑥𝐴𝐵))
11 smfadd.m . . . . 5 (𝜑 → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
12 eqid 2730 . . . . 5 dom (𝑥𝐴𝐵) = dom (𝑥𝐴𝐵)
133, 11, 12smfdmss 46750 . . . 4 (𝜑 → dom (𝑥𝐴𝐵) ⊆ 𝑆)
1410, 13eqsstrd 3967 . . 3 (𝜑𝐴 𝑆)
156, 14sstrd 3943 . 2 (𝜑 → (𝐴𝐶) ⊆ 𝑆)
165, 8syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐵 ∈ ℝ)
17 elinel2 4150 . . . . . . 7 (𝑥 ∈ (𝐴𝐶) → 𝑥𝐶)
1817adantl 481 . . . . . 6 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝑥𝐶)
19 smfadd.d . . . . . 6 ((𝜑𝑥𝐶) → 𝐷 ∈ ℝ)
2018, 19syldan 591 . . . . 5 ((𝜑𝑥 ∈ (𝐴𝐶)) → 𝐷 ∈ ℝ)
2116, 20readdcld 11133 . . . 4 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 + 𝐷) ∈ ℝ)
22 eqid 2730 . . . 4 (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)) = (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷))
231, 21, 22fmptdf 7045 . . 3 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)):(𝐴𝐶)⟶ℝ)
2423fvmptelcdm 7041 . 2 ((𝜑𝑥 ∈ (𝐴𝐶)) → (𝐵 + 𝐷) ∈ ℝ)
25 nfv 1915 . . . 4 𝑥 𝑎 ∈ ℝ
261, 25nfan 1900 . . 3 𝑥(𝜑𝑎 ∈ ℝ)
273adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑆 ∈ SAlg)
28 smfadd.a . . . 4 (𝜑𝐴𝑉)
2928adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝐴𝑉)
308adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐴) → 𝐵 ∈ ℝ)
3119adantlr 715 . . 3 (((𝜑𝑎 ∈ ℝ) ∧ 𝑥𝐶) → 𝐷 ∈ ℝ)
3211adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐴𝐵) ∈ (SMblFn‘𝑆))
33 smfadd.n . . . 4 (𝜑 → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
3433adantr 480 . . 3 ((𝜑𝑎 ∈ ℝ) → (𝑥𝐶𝐷) ∈ (SMblFn‘𝑆))
35 simpr 484 . . 3 ((𝜑𝑎 ∈ ℝ) → 𝑎 ∈ ℝ)
36 oveq2 7349 . . . . . 6 (𝑟 = 𝑞 → (𝑝 + 𝑟) = (𝑝 + 𝑞))
3736breq1d 5099 . . . . 5 (𝑟 = 𝑞 → ((𝑝 + 𝑟) < 𝑎 ↔ (𝑝 + 𝑞) < 𝑎))
3837cbvrabv 3403 . . . 4 {𝑟 ∈ ℚ ∣ (𝑝 + 𝑟) < 𝑎} = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑎}
3938mpteq2i 5185 . . 3 (𝑝 ∈ ℚ ↦ {𝑟 ∈ ℚ ∣ (𝑝 + 𝑟) < 𝑎}) = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑎})
4026, 27, 29, 30, 31, 32, 34, 35, 39smfaddlem2 46781 . 2 ((𝜑𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴𝐶) ∣ (𝐵 + 𝐷) < 𝑎} ∈ (𝑆t (𝐴𝐶)))
411, 2, 3, 15, 24, 40issmfdmpt 46765 1 (𝜑 → (𝑥 ∈ (𝐴𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2110  {crab 3393  cin 3899   cuni 4857   class class class wbr 5089  cmpt 5170  dom cdm 5614  cfv 6477  (class class class)co 7341  cr 10997   + caddc 11001   < clt 11138  cq 12838  SAlgcsalg 46325  SMblFncsmblfn 46712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2112  ax-9 2120  ax-10 2143  ax-11 2159  ax-12 2179  ax-ext 2702  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7663  ax-inf2 9526  ax-cc 10318  ax-ac2 10346  ax-cnex 11054  ax-resscn 11055  ax-1cn 11056  ax-icn 11057  ax-addcl 11058  ax-addrcl 11059  ax-mulcl 11060  ax-mulrcl 11061  ax-mulcom 11062  ax-addass 11063  ax-mulass 11064  ax-distr 11065  ax-i2m1 11066  ax-1ne0 11067  ax-1rid 11068  ax-rnegex 11069  ax-rrecex 11070  ax-cnre 11071  ax-pre-lttri 11072  ax-pre-lttrn 11073  ax-pre-ltadd 11074  ax-pre-mulgt0 11075  ax-pre-sup 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3344  df-reu 3345  df-rab 3394  df-v 3436  df-sbc 3740  df-csb 3849  df-dif 3903  df-un 3905  df-in 3907  df-ss 3917  df-pss 3920  df-nul 4282  df-if 4474  df-pw 4550  df-sn 4575  df-pr 4577  df-op 4581  df-uni 4858  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6244  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6433  df-fun 6479  df-fn 6480  df-f 6481  df-f1 6482  df-fo 6483  df-f1o 6484  df-fv 6485  df-isom 6486  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-oadd 8384  df-omul 8385  df-er 8617  df-map 8747  df-pm 8748  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-oi 9391  df-card 9824  df-acn 9827  df-ac 9999  df-pnf 11140  df-mnf 11141  df-xr 11142  df-ltxr 11143  df-le 11144  df-sub 11338  df-neg 11339  df-div 11767  df-nn 12118  df-n0 12374  df-z 12461  df-uz 12725  df-q 12839  df-ioo 13241  df-ico 13243  df-rest 17318  df-salg 46326  df-smblfn 46713
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator