![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfadd | Structured version Visualization version GIF version |
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfadd.x | β’ β²π₯π |
smfadd.s | β’ (π β π β SAlg) |
smfadd.a | β’ (π β π΄ β π) |
smfadd.b | β’ ((π β§ π₯ β π΄) β π΅ β β) |
smfadd.d | β’ ((π β§ π₯ β πΆ) β π· β β) |
smfadd.m | β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
smfadd.n | β’ (π β (π₯ β πΆ β¦ π·) β (SMblFnβπ)) |
Ref | Expression |
---|---|
smfadd | β’ (π β (π₯ β (π΄ β© πΆ) β¦ (π΅ + π·)) β (SMblFnβπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfadd.x | . 2 β’ β²π₯π | |
2 | nfv 1917 | . 2 β’ β²ππ | |
3 | smfadd.s | . 2 β’ (π β π β SAlg) | |
4 | elinel1 4195 | . . . . 5 β’ (π₯ β (π΄ β© πΆ) β π₯ β π΄) | |
5 | 4 | adantl 482 | . . . 4 β’ ((π β§ π₯ β (π΄ β© πΆ)) β π₯ β π΄) |
6 | 1, 5 | ssdf 44066 | . . 3 β’ (π β (π΄ β© πΆ) β π΄) |
7 | eqid 2732 | . . . . . 6 β’ (π₯ β π΄ β¦ π΅) = (π₯ β π΄ β¦ π΅) | |
8 | smfadd.b | . . . . . 6 β’ ((π β§ π₯ β π΄) β π΅ β β) | |
9 | 1, 7, 8 | dmmptdf 44222 | . . . . 5 β’ (π β dom (π₯ β π΄ β¦ π΅) = π΄) |
10 | 9 | eqcomd 2738 | . . . 4 β’ (π β π΄ = dom (π₯ β π΄ β¦ π΅)) |
11 | smfadd.m | . . . . 5 β’ (π β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) | |
12 | eqid 2732 | . . . . 5 β’ dom (π₯ β π΄ β¦ π΅) = dom (π₯ β π΄ β¦ π΅) | |
13 | 3, 11, 12 | smfdmss 45748 | . . . 4 β’ (π β dom (π₯ β π΄ β¦ π΅) β βͺ π) |
14 | 10, 13 | eqsstrd 4020 | . . 3 β’ (π β π΄ β βͺ π) |
15 | 6, 14 | sstrd 3992 | . 2 β’ (π β (π΄ β© πΆ) β βͺ π) |
16 | 5, 8 | syldan 591 | . . . . 5 β’ ((π β§ π₯ β (π΄ β© πΆ)) β π΅ β β) |
17 | elinel2 4196 | . . . . . . 7 β’ (π₯ β (π΄ β© πΆ) β π₯ β πΆ) | |
18 | 17 | adantl 482 | . . . . . 6 β’ ((π β§ π₯ β (π΄ β© πΆ)) β π₯ β πΆ) |
19 | smfadd.d | . . . . . 6 β’ ((π β§ π₯ β πΆ) β π· β β) | |
20 | 18, 19 | syldan 591 | . . . . 5 β’ ((π β§ π₯ β (π΄ β© πΆ)) β π· β β) |
21 | 16, 20 | readdcld 11247 | . . . 4 β’ ((π β§ π₯ β (π΄ β© πΆ)) β (π΅ + π·) β β) |
22 | eqid 2732 | . . . 4 β’ (π₯ β (π΄ β© πΆ) β¦ (π΅ + π·)) = (π₯ β (π΄ β© πΆ) β¦ (π΅ + π·)) | |
23 | 1, 21, 22 | fmptdf 7118 | . . 3 β’ (π β (π₯ β (π΄ β© πΆ) β¦ (π΅ + π·)):(π΄ β© πΆ)βΆβ) |
24 | 23 | fvmptelcdm 7114 | . 2 β’ ((π β§ π₯ β (π΄ β© πΆ)) β (π΅ + π·) β β) |
25 | nfv 1917 | . . . 4 β’ β²π₯ π β β | |
26 | 1, 25 | nfan 1902 | . . 3 β’ β²π₯(π β§ π β β) |
27 | 3 | adantr 481 | . . 3 β’ ((π β§ π β β) β π β SAlg) |
28 | smfadd.a | . . . 4 β’ (π β π΄ β π) | |
29 | 28 | adantr 481 | . . 3 β’ ((π β§ π β β) β π΄ β π) |
30 | 8 | adantlr 713 | . . 3 β’ (((π β§ π β β) β§ π₯ β π΄) β π΅ β β) |
31 | 19 | adantlr 713 | . . 3 β’ (((π β§ π β β) β§ π₯ β πΆ) β π· β β) |
32 | 11 | adantr 481 | . . 3 β’ ((π β§ π β β) β (π₯ β π΄ β¦ π΅) β (SMblFnβπ)) |
33 | smfadd.n | . . . 4 β’ (π β (π₯ β πΆ β¦ π·) β (SMblFnβπ)) | |
34 | 33 | adantr 481 | . . 3 β’ ((π β§ π β β) β (π₯ β πΆ β¦ π·) β (SMblFnβπ)) |
35 | simpr 485 | . . 3 β’ ((π β§ π β β) β π β β) | |
36 | oveq2 7419 | . . . . . 6 β’ (π = π β (π + π) = (π + π)) | |
37 | 36 | breq1d 5158 | . . . . 5 β’ (π = π β ((π + π) < π β (π + π) < π)) |
38 | 37 | cbvrabv 3442 | . . . 4 β’ {π β β β£ (π + π) < π} = {π β β β£ (π + π) < π} |
39 | 38 | mpteq2i 5253 | . . 3 β’ (π β β β¦ {π β β β£ (π + π) < π}) = (π β β β¦ {π β β β£ (π + π) < π}) |
40 | 26, 27, 29, 30, 31, 32, 34, 35, 39 | smfaddlem2 45779 | . 2 β’ ((π β§ π β β) β {π₯ β (π΄ β© πΆ) β£ (π΅ + π·) < π} β (π βΎt (π΄ β© πΆ))) |
41 | 1, 2, 3, 15, 24, 40 | issmfdmpt 45763 | 1 β’ (π β (π₯ β (π΄ β© πΆ) β¦ (π΅ + π·)) β (SMblFnβπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 {crab 3432 β© cin 3947 βͺ cuni 4908 class class class wbr 5148 β¦ cmpt 5231 dom cdm 5676 βcfv 6543 (class class class)co 7411 βcr 11111 + caddc 11115 < clt 11252 βcq 12936 SAlgcsalg 45323 SMblFncsmblfn 45710 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-inf2 9638 ax-cc 10432 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-oadd 8472 df-omul 8473 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-oi 9507 df-card 9936 df-acn 9939 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-ioo 13332 df-ico 13334 df-rest 17372 df-salg 45324 df-smblfn 45711 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |