![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfadd | Structured version Visualization version GIF version |
Description: The sum of two sigma-measurable functions is measurable. Proposition 121E (b) of [Fremlin1] p. 37 . (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
smfadd.x | ⊢ Ⅎ𝑥𝜑 |
smfadd.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfadd.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
smfadd.b | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
smfadd.d | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
smfadd.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
smfadd.n | ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
Ref | Expression |
---|---|
smfadd | ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfadd.x | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1910 | . 2 ⊢ Ⅎ𝑎𝜑 | |
3 | smfadd.s | . 2 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
4 | elinel1 4196 | . . . . 5 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐴) | |
5 | 4 | adantl 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐴) |
6 | 1, 5 | ssdf 44694 | . . 3 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ 𝐴) |
7 | eqid 2726 | . . . . . 6 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
8 | smfadd.b | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
9 | 1, 7, 8 | dmmptdf 44849 | . . . . 5 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) = 𝐴) |
10 | 9 | eqcomd 2732 | . . . 4 ⊢ (𝜑 → 𝐴 = dom (𝑥 ∈ 𝐴 ↦ 𝐵)) |
11 | smfadd.m | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) | |
12 | eqid 2726 | . . . . 5 ⊢ dom (𝑥 ∈ 𝐴 ↦ 𝐵) = dom (𝑥 ∈ 𝐴 ↦ 𝐵) | |
13 | 3, 11, 12 | smfdmss 46372 | . . . 4 ⊢ (𝜑 → dom (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆ ∪ 𝑆) |
14 | 10, 13 | eqsstrd 4018 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝑆) |
15 | 6, 14 | sstrd 3990 | . 2 ⊢ (𝜑 → (𝐴 ∩ 𝐶) ⊆ ∪ 𝑆) |
16 | 5, 8 | syldan 589 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐵 ∈ ℝ) |
17 | elinel2 4197 | . . . . . . 7 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) → 𝑥 ∈ 𝐶) | |
18 | 17 | adantl 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝑥 ∈ 𝐶) |
19 | smfadd.d | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) | |
20 | 18, 19 | syldan 589 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → 𝐷 ∈ ℝ) |
21 | 16, 20 | readdcld 11295 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → (𝐵 + 𝐷) ∈ ℝ) |
22 | eqid 2726 | . . . 4 ⊢ (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) = (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) | |
23 | 1, 21, 22 | fmptdf 7133 | . . 3 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)):(𝐴 ∩ 𝐶)⟶ℝ) |
24 | 23 | fvmptelcdm 7129 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴 ∩ 𝐶)) → (𝐵 + 𝐷) ∈ ℝ) |
25 | nfv 1910 | . . . 4 ⊢ Ⅎ𝑥 𝑎 ∈ ℝ | |
26 | 1, 25 | nfan 1895 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝑎 ∈ ℝ) |
27 | 3 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑆 ∈ SAlg) |
28 | smfadd.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
29 | 28 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝐴 ∈ 𝑉) |
30 | 8 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
31 | 19 | adantlr 713 | . . 3 ⊢ (((𝜑 ∧ 𝑎 ∈ ℝ) ∧ 𝑥 ∈ 𝐶) → 𝐷 ∈ ℝ) |
32 | 11 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ (SMblFn‘𝑆)) |
33 | smfadd.n | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) | |
34 | 33 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → (𝑥 ∈ 𝐶 ↦ 𝐷) ∈ (SMblFn‘𝑆)) |
35 | simpr 483 | . . 3 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → 𝑎 ∈ ℝ) | |
36 | oveq2 7434 | . . . . . 6 ⊢ (𝑟 = 𝑞 → (𝑝 + 𝑟) = (𝑝 + 𝑞)) | |
37 | 36 | breq1d 5165 | . . . . 5 ⊢ (𝑟 = 𝑞 → ((𝑝 + 𝑟) < 𝑎 ↔ (𝑝 + 𝑞) < 𝑎)) |
38 | 37 | cbvrabv 3430 | . . . 4 ⊢ {𝑟 ∈ ℚ ∣ (𝑝 + 𝑟) < 𝑎} = {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑎} |
39 | 38 | mpteq2i 5260 | . . 3 ⊢ (𝑝 ∈ ℚ ↦ {𝑟 ∈ ℚ ∣ (𝑝 + 𝑟) < 𝑎}) = (𝑝 ∈ ℚ ↦ {𝑞 ∈ ℚ ∣ (𝑝 + 𝑞) < 𝑎}) |
40 | 26, 27, 29, 30, 31, 32, 34, 35, 39 | smfaddlem2 46403 | . 2 ⊢ ((𝜑 ∧ 𝑎 ∈ ℝ) → {𝑥 ∈ (𝐴 ∩ 𝐶) ∣ (𝐵 + 𝐷) < 𝑎} ∈ (𝑆 ↾t (𝐴 ∩ 𝐶))) |
41 | 1, 2, 3, 15, 24, 40 | issmfdmpt 46387 | 1 ⊢ (𝜑 → (𝑥 ∈ (𝐴 ∩ 𝐶) ↦ (𝐵 + 𝐷)) ∈ (SMblFn‘𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 Ⅎwnf 1778 ∈ wcel 2099 {crab 3419 ∩ cin 3946 ∪ cuni 4915 class class class wbr 5155 ↦ cmpt 5238 dom cdm 5684 ‘cfv 6556 (class class class)co 7426 ℝcr 11159 + caddc 11163 < clt 11300 ℚcq 12986 SAlgcsalg 45947 SMblFncsmblfn 46334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5292 ax-sep 5306 ax-nul 5313 ax-pow 5371 ax-pr 5435 ax-un 7748 ax-inf2 9686 ax-cc 10480 ax-ac2 10508 ax-cnex 11216 ax-resscn 11217 ax-1cn 11218 ax-icn 11219 ax-addcl 11220 ax-addrcl 11221 ax-mulcl 11222 ax-mulrcl 11223 ax-mulcom 11224 ax-addass 11225 ax-mulass 11226 ax-distr 11227 ax-i2m1 11228 ax-1ne0 11229 ax-1rid 11230 ax-rnegex 11231 ax-rrecex 11232 ax-cnre 11233 ax-pre-lttri 11234 ax-pre-lttrn 11235 ax-pre-ltadd 11236 ax-pre-mulgt0 11237 ax-pre-sup 11238 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4916 df-int 4957 df-iun 5005 df-br 5156 df-opab 5218 df-mpt 5239 df-tr 5273 df-id 5582 df-eprel 5588 df-po 5596 df-so 5597 df-fr 5639 df-se 5640 df-we 5641 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6314 df-ord 6381 df-on 6382 df-lim 6383 df-suc 6384 df-iota 6508 df-fun 6558 df-fn 6559 df-f 6560 df-f1 6561 df-fo 6562 df-f1o 6563 df-fv 6564 df-isom 6565 df-riota 7382 df-ov 7429 df-oprab 7430 df-mpo 7431 df-om 7879 df-1st 8005 df-2nd 8006 df-frecs 8298 df-wrecs 8329 df-recs 8403 df-rdg 8442 df-1o 8498 df-2o 8499 df-oadd 8502 df-omul 8503 df-er 8736 df-map 8859 df-pm 8860 df-en 8977 df-dom 8978 df-sdom 8979 df-fin 8980 df-sup 9487 df-inf 9488 df-oi 9555 df-card 9984 df-acn 9987 df-ac 10161 df-pnf 11302 df-mnf 11303 df-xr 11304 df-ltxr 11305 df-le 11306 df-sub 11498 df-neg 11499 df-div 11924 df-nn 12267 df-n0 12527 df-z 12613 df-uz 12877 df-q 12987 df-ioo 13384 df-ico 13386 df-rest 17439 df-salg 45948 df-smblfn 46335 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |