Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssdmral Structured version   Visualization version   GIF version

Theorem ssdmral 38413
Description: Subclass of a domain. (Contributed by Peter Mazsa, 15-Sep-2018.)
Assertion
Ref Expression
ssdmral (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥𝐴𝑦 𝑥𝑅𝑦)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑅,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem ssdmral
StepHypRef Expression
1 dfss3 3918 . 2 (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥𝐴 𝑥 ∈ dom 𝑅)
2 eldmg 5837 . . . 4 (𝑥 ∈ V → (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦))
32elv 3441 . . 3 (𝑥 ∈ dom 𝑅 ↔ ∃𝑦 𝑥𝑅𝑦)
43ralbii 3078 . 2 (∀𝑥𝐴 𝑥 ∈ dom 𝑅 ↔ ∀𝑥𝐴𝑦 𝑥𝑅𝑦)
51, 4bitri 275 1 (𝐴 ⊆ dom 𝑅 ↔ ∀𝑥𝐴𝑦 𝑥𝑅𝑦)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1780  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089  dom cdm 5614
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-dm 5624
This theorem is referenced by:  dmsucmap  38491
  Copyright terms: Public domain W3C validator