Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmsucmap Structured version   Visualization version   GIF version

Theorem dmsucmap 38491
Description: The domain of the successor map is the universe. (Contributed by Peter Mazsa, 7-Jan-2026.)
Assertion
Ref Expression
dmsucmap dom SucMap = V

Proof of Theorem dmsucmap
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssv 3954 . 2 dom SucMap ⊆ V
2 sucexg 7738 . . . . . . 7 (𝑚 ∈ V → suc 𝑚 ∈ V)
32elv 3441 . . . . . 6 suc 𝑚 ∈ V
43isseti 3454 . . . . 5 𝑛 𝑛 = suc 𝑚
5 brsucmap 38489 . . . . . . . 8 ((𝑚 ∈ V ∧ 𝑛 ∈ V) → (𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛))
65el2v 3443 . . . . . . 7 (𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛)
7 eqcom 2738 . . . . . . 7 (suc 𝑚 = 𝑛𝑛 = suc 𝑚)
86, 7bitri 275 . . . . . 6 (𝑚 SucMap 𝑛𝑛 = suc 𝑚)
98exbii 1849 . . . . 5 (∃𝑛 𝑚 SucMap 𝑛 ↔ ∃𝑛 𝑛 = suc 𝑚)
104, 9mpbir 231 . . . 4 𝑛 𝑚 SucMap 𝑛
1110rgenw 3051 . . 3 𝑚 ∈ V ∃𝑛 𝑚 SucMap 𝑛
12 ssdmral 38413 . . 3 (V ⊆ dom SucMap ↔ ∀𝑚 ∈ V ∃𝑛 𝑚 SucMap 𝑛)
1311, 12mpbir 231 . 2 V ⊆ dom SucMap
141, 13eqssi 3946 1 dom SucMap = V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  wex 1780  wcel 2111  wral 3047  Vcvv 3436  wss 3897   class class class wbr 5089  dom cdm 5614  suc csuc 6308   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-dm 5624  df-suc 6312  df-sucmap 38485
This theorem is referenced by:  dfpre  38499
  Copyright terms: Public domain W3C validator