| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmsucmap | Structured version Visualization version GIF version | ||
| Description: The domain of the successor map is the universe. (Contributed by Peter Mazsa, 7-Jan-2026.) |
| Ref | Expression |
|---|---|
| dmsucmap | ⊢ dom SucMap = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3954 | . 2 ⊢ dom SucMap ⊆ V | |
| 2 | sucexg 7738 | . . . . . . 7 ⊢ (𝑚 ∈ V → suc 𝑚 ∈ V) | |
| 3 | 2 | elv 3441 | . . . . . 6 ⊢ suc 𝑚 ∈ V |
| 4 | 3 | isseti 3454 | . . . . 5 ⊢ ∃𝑛 𝑛 = suc 𝑚 |
| 5 | brsucmap 38489 | . . . . . . . 8 ⊢ ((𝑚 ∈ V ∧ 𝑛 ∈ V) → (𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛)) | |
| 6 | 5 | el2v 3443 | . . . . . . 7 ⊢ (𝑚 SucMap 𝑛 ↔ suc 𝑚 = 𝑛) |
| 7 | eqcom 2738 | . . . . . . 7 ⊢ (suc 𝑚 = 𝑛 ↔ 𝑛 = suc 𝑚) | |
| 8 | 6, 7 | bitri 275 | . . . . . 6 ⊢ (𝑚 SucMap 𝑛 ↔ 𝑛 = suc 𝑚) |
| 9 | 8 | exbii 1849 | . . . . 5 ⊢ (∃𝑛 𝑚 SucMap 𝑛 ↔ ∃𝑛 𝑛 = suc 𝑚) |
| 10 | 4, 9 | mpbir 231 | . . . 4 ⊢ ∃𝑛 𝑚 SucMap 𝑛 |
| 11 | 10 | rgenw 3051 | . . 3 ⊢ ∀𝑚 ∈ V ∃𝑛 𝑚 SucMap 𝑛 |
| 12 | ssdmral 38413 | . . 3 ⊢ (V ⊆ dom SucMap ↔ ∀𝑚 ∈ V ∃𝑛 𝑚 SucMap 𝑛) | |
| 13 | 11, 12 | mpbir 231 | . 2 ⊢ V ⊆ dom SucMap |
| 14 | 1, 13 | eqssi 3946 | 1 ⊢ dom SucMap = V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 dom cdm 5614 suc csuc 6308 SucMap csucmap 38227 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-dm 5624 df-suc 6312 df-sucmap 38485 |
| This theorem is referenced by: dfpre 38499 |
| Copyright terms: Public domain | W3C validator |