![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dmiin | Structured version Visualization version GIF version |
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
Ref | Expression |
---|---|
dmiin | ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfii1 4990 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
2 | 1 | nfdm 5907 | . . 3 ⊢ Ⅎ𝑥dom ∩ 𝑥 ∈ 𝐴 𝐵 |
3 | 2 | ssiinf 5015 | . 2 ⊢ (dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∀𝑥 ∈ 𝐴 dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
4 | iinss2 5018 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
5 | dmss 5859 | . . 3 ⊢ (∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝑥 ∈ 𝐴 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
7 | 3, 6 | mprgbir 3068 | 1 ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 ⊆ wss 3911 ∩ ciin 4956 dom cdm 5634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ral 3062 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-iin 4958 df-br 5107 df-dm 5644 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |