MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dmiin Structured version   Visualization version   GIF version

Theorem dmiin 5893
Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.)
Assertion
Ref Expression
dmiin dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵

Proof of Theorem dmiin
StepHypRef Expression
1 nfii1 4979 . . . 4 𝑥 𝑥𝐴 𝐵
21nfdm 5891 . . 3 𝑥dom 𝑥𝐴 𝐵
32ssiinf 5003 . 2 (dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵 ↔ ∀𝑥𝐴 dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
4 iinss2 5006 . . 3 (𝑥𝐴 𝑥𝐴 𝐵𝐵)
5 dmss 5842 . . 3 ( 𝑥𝐴 𝐵𝐵 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
64, 5syl 17 . 2 (𝑥𝐴 → dom 𝑥𝐴 𝐵 ⊆ dom 𝐵)
73, 6mprgbir 3054 1 dom 𝑥𝐴 𝐵 𝑥𝐴 dom 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  wss 3902   ciin 4942  dom cdm 5616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-iin 4944  df-br 5092  df-dm 5626
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator