|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dmiin | Structured version Visualization version GIF version | ||
| Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.) | 
| Ref | Expression | 
|---|---|
| dmiin | ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | nfii1 5029 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
| 2 | 1 | nfdm 5962 | . . 3 ⊢ Ⅎ𝑥dom ∩ 𝑥 ∈ 𝐴 𝐵 | 
| 3 | 2 | ssiinf 5054 | . 2 ⊢ (dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∀𝑥 ∈ 𝐴 dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | 
| 4 | iinss2 5057 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
| 5 | dmss 5913 | . . 3 ⊢ (∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑥 ∈ 𝐴 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | 
| 7 | 3, 6 | mprgbir 3068 | 1 ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 | 
| Colors of variables: wff setvar class | 
| Syntax hints: ∈ wcel 2108 ⊆ wss 3951 ∩ ciin 4992 dom cdm 5685 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ral 3062 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-iin 4994 df-br 5144 df-dm 5695 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |