| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dmiin | Structured version Visualization version GIF version | ||
| Description: Domain of an intersection. (Contributed by FL, 15-Oct-2012.) |
| Ref | Expression |
|---|---|
| dmiin | ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfii1 4996 | . . . 4 ⊢ Ⅎ𝑥∩ 𝑥 ∈ 𝐴 𝐵 | |
| 2 | 1 | nfdm 5918 | . . 3 ⊢ Ⅎ𝑥dom ∩ 𝑥 ∈ 𝐴 𝐵 |
| 3 | 2 | ssiinf 5021 | . 2 ⊢ (dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 ↔ ∀𝑥 ∈ 𝐴 dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
| 4 | iinss2 5024 | . . 3 ⊢ (𝑥 ∈ 𝐴 → ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵) | |
| 5 | dmss 5869 | . . 3 ⊢ (∩ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐵 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝑥 ∈ 𝐴 → dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ dom 𝐵) |
| 7 | 3, 6 | mprgbir 3052 | 1 ⊢ dom ∩ 𝑥 ∈ 𝐴 𝐵 ⊆ ∩ 𝑥 ∈ 𝐴 dom 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 ⊆ wss 3917 ∩ ciin 4959 dom cdm 5641 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-iin 4961 df-br 5111 df-dm 5651 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |