![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iunxdif2 | Structured version Visualization version GIF version |
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
iunxdif2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxdif2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss2 5055 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷) | |
2 | difss 4147 | . . . . 5 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | iunss1 5012 | . . . . 5 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 |
5 | iunxdif2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | cbviunv 5046 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐴 𝐷 |
7 | 4, 6 | sseqtrri 4034 | . . 3 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 |
8 | 1, 7 | jctil 519 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) |
9 | eqss 4012 | . 2 ⊢ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) | |
10 | 8, 9 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1538 ∀wral 3060 ∃wrex 3069 ∖ cdif 3961 ⊆ wss 3964 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-v 3481 df-dif 3967 df-ss 3981 df-iun 4999 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |