Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > iunxdif2 | Structured version Visualization version GIF version |
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
Ref | Expression |
---|---|
iunxdif2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
iunxdif2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunss2 4979 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷) | |
2 | difss 4066 | . . . . 5 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
3 | iunss1 4938 | . . . . 5 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷) | |
4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 |
5 | iunxdif2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
6 | 5 | cbviunv 4970 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐴 𝐷 |
7 | 4, 6 | sseqtrri 3958 | . . 3 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 |
8 | 1, 7 | jctil 520 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) |
9 | eqss 3936 | . 2 ⊢ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) | |
10 | 8, 9 | sylibr 233 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ⊆ wss 3887 ∪ ciun 4924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1542 df-ex 1783 df-nf 1787 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-iun 4926 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |