MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iunxdif2 Structured version   Visualization version   GIF version

Theorem iunxdif2 5033
Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.)
Hypothesis
Ref Expression
iunxdif2.1 (𝑥 = 𝑦𝐶 = 𝐷)
Assertion
Ref Expression
iunxdif2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑦,𝐶   𝑥,𝐷
Allowed substitution hints:   𝐶(𝑥)   𝐷(𝑦)

Proof of Theorem iunxdif2
StepHypRef Expression
1 iunss2 5029 . . 3 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑥𝐴 𝐶 𝑦 ∈ (𝐴𝐵)𝐷)
2 difss 4116 . . . . 5 (𝐴𝐵) ⊆ 𝐴
3 iunss1 4986 . . . . 5 ((𝐴𝐵) ⊆ 𝐴 𝑦 ∈ (𝐴𝐵)𝐷 𝑦𝐴 𝐷)
42, 3ax-mp 5 . . . 4 𝑦 ∈ (𝐴𝐵)𝐷 𝑦𝐴 𝐷
5 iunxdif2.1 . . . . 5 (𝑥 = 𝑦𝐶 = 𝐷)
65cbviunv 5020 . . . 4 𝑥𝐴 𝐶 = 𝑦𝐴 𝐷
74, 6sseqtrri 4013 . . 3 𝑦 ∈ (𝐴𝐵)𝐷 𝑥𝐴 𝐶
81, 7jctil 519 . 2 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 → ( 𝑦 ∈ (𝐴𝐵)𝐷 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑦 ∈ (𝐴𝐵)𝐷))
9 eqss 3979 . 2 ( 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶 ↔ ( 𝑦 ∈ (𝐴𝐵)𝐷 𝑥𝐴 𝐶 𝑥𝐴 𝐶 𝑦 ∈ (𝐴𝐵)𝐷))
108, 9sylibr 234 1 (∀𝑥𝐴𝑦 ∈ (𝐴𝐵)𝐶𝐷 𝑦 ∈ (𝐴𝐵)𝐷 = 𝑥𝐴 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wral 3050  wrex 3059  cdif 3928  wss 3931   ciun 4971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1542  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-v 3465  df-dif 3934  df-ss 3948  df-iun 4973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator