| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iunxdif2 | Structured version Visualization version GIF version | ||
| Description: Indexed union with a class difference as its index. (Contributed by NM, 10-Dec-2004.) |
| Ref | Expression |
|---|---|
| iunxdif2.1 | ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| iunxdif2 | ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iunss2 5029 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷) | |
| 2 | difss 4116 | . . . . 5 ⊢ (𝐴 ∖ 𝐵) ⊆ 𝐴 | |
| 3 | iunss1 4986 | . . . . 5 ⊢ ((𝐴 ∖ 𝐵) ⊆ 𝐴 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷) | |
| 4 | 2, 3 | ax-mp 5 | . . . 4 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑦 ∈ 𝐴 𝐷 |
| 5 | iunxdif2.1 | . . . . 5 ⊢ (𝑥 = 𝑦 → 𝐶 = 𝐷) | |
| 6 | 5 | cbviunv 5020 | . . . 4 ⊢ ∪ 𝑥 ∈ 𝐴 𝐶 = ∪ 𝑦 ∈ 𝐴 𝐷 |
| 7 | 4, 6 | sseqtrri 4013 | . . 3 ⊢ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 |
| 8 | 1, 7 | jctil 519 | . 2 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) |
| 9 | eqss 3979 | . 2 ⊢ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶 ↔ (∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ∧ ∪ 𝑥 ∈ 𝐴 𝐶 ⊆ ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷)) | |
| 10 | 8, 9 | sylibr 234 | 1 ⊢ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ (𝐴 ∖ 𝐵)𝐶 ⊆ 𝐷 → ∪ 𝑦 ∈ (𝐴 ∖ 𝐵)𝐷 = ∪ 𝑥 ∈ 𝐴 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∀wral 3050 ∃wrex 3059 ∖ cdif 3928 ⊆ wss 3931 ∪ ciun 4971 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-v 3465 df-dif 3934 df-ss 3948 df-iun 4973 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |