| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssopab2bw | Structured version Visualization version GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. Version of ssopab2b 5524 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by NM, 27-Dec-1996.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| ssopab2bw | ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfopab1 5189 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 2 | nfopab1 5189 | . . . 4 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜓} | |
| 3 | 1, 2 | nfss 3951 | . . 3 ⊢ Ⅎ𝑥{〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| 4 | nfopab2 5190 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} | |
| 5 | nfopab2 5190 | . . . . 5 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜓} | |
| 6 | 4, 5 | nfss 3951 | . . . 4 ⊢ Ⅎ𝑦{〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} |
| 7 | ssel 3952 | . . . . 5 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} → 〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓})) | |
| 8 | opabidw 5499 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜑) | |
| 9 | opabidw 5499 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ 𝜓) | |
| 10 | 7, 8, 9 | 3imtr3g 295 | . . . 4 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → (𝜑 → 𝜓)) |
| 11 | 6, 10 | alrimi 2213 | . . 3 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → ∀𝑦(𝜑 → 𝜓)) |
| 12 | 3, 11 | alrimi 2213 | . 2 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} → ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| 13 | ssopab2 5521 | . 2 ⊢ (∀𝑥∀𝑦(𝜑 → 𝜓) → {〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓}) | |
| 14 | 12, 13 | impbii 209 | 1 ⊢ ({〈𝑥, 𝑦〉 ∣ 𝜑} ⊆ {〈𝑥, 𝑦〉 ∣ 𝜓} ↔ ∀𝑥∀𝑦(𝜑 → 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wal 1538 ∈ wcel 2108 ⊆ wss 3926 〈cop 4607 {copab 5181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-opab 5182 |
| This theorem is referenced by: eqopab2bw 5523 dffun2OLDOLD 6543 marypha2lem3 9449 cvmlift2lem12 35336 cossssid2 38486 |
| Copyright terms: Public domain | W3C validator |