MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2bw Structured version   Visualization version   GIF version

Theorem ssopab2bw 5566
Description: Equivalence of ordered pair abstraction subclass and implication. Version of ssopab2b 5568 with a disjoint variable condition, which does not require ax-13 2380. (Contributed by NM, 27-Dec-1996.) Avoid ax-13 2380. (Revised by GG, 26-Jan-2024.)
Assertion
Ref Expression
ssopab2bw ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem ssopab2bw
StepHypRef Expression
1 nfopab1 5236 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab1 5236 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜓}
31, 2nfss 4001 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
4 nfopab2 5237 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 nfopab2 5237 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜓}
64, 5nfss 4001 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
7 ssel 4002 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
8 opabidw 5543 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
9 opabidw 5543 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜓)
107, 8, 93imtr3g 295 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → (𝜑𝜓))
116, 10alrimi 2214 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ∀𝑦(𝜑𝜓))
123, 11alrimi 2214 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ∀𝑥𝑦(𝜑𝜓))
13 ssopab2 5565 . 2 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
1412, 13impbii 209 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1535  wcel 2108  wss 3976  cop 4654  {copab 5228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229
This theorem is referenced by:  eqopab2bw  5567  dffun2OLDOLD  6585  marypha2lem3  9506  cvmlift2lem12  35282  cossssid2  38424
  Copyright terms: Public domain W3C validator