MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2b Structured version   Visualization version   GIF version

Theorem ssopab2b 5511
Description: Equivalence of ordered pair abstraction subclass and implication. Usage of this theorem is discouraged because it depends on ax-13 2371. Use the weaker ssopab2bw 5509 when possible. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (New usage is discouraged.)
Assertion
Ref Expression
ssopab2b ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 5179 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab1 5179 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜓}
31, 2nfss 3941 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
4 nfopab2 5180 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 nfopab2 5180 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜓}
64, 5nfss 3941 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
7 ssel 3942 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
8 opabid 5487 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
9 opabid 5487 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜓)
107, 8, 93imtr3g 295 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → (𝜑𝜓))
116, 10alrimi 2214 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ∀𝑦(𝜑𝜓))
123, 11alrimi 2214 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ∀𝑥𝑦(𝜑𝜓))
13 ssopab2 5508 . 2 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
1412, 13impbii 209 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wal 1538  wcel 2109  wss 3916  cop 4597  {copab 5171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-opab 5172
This theorem is referenced by:  eqopab2b  5514
  Copyright terms: Public domain W3C validator