MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssopab2b Structured version   Visualization version   GIF version

Theorem ssopab2b 5462
Description: Equivalence of ordered pair abstraction subclass and implication. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker ssopab2bw 5460 when possible. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Mario Carneiro, 18-Nov-2016.) (New usage is discouraged.)
Assertion
Ref Expression
ssopab2b ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))

Proof of Theorem ssopab2b
StepHypRef Expression
1 nfopab1 5144 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑}
2 nfopab1 5144 . . . 4 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜓}
31, 2nfss 3913 . . 3 𝑥{⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
4 nfopab2 5145 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑}
5 nfopab2 5145 . . . . 5 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜓}
64, 5nfss 3913 . . . 4 𝑦{⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓}
7 ssel 3914 . . . . 5 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} → ⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓}))
8 opabid 5438 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜑)
9 opabid 5438 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ 𝜓)
107, 8, 93imtr3g 295 . . . 4 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → (𝜑𝜓))
116, 10alrimi 2206 . . 3 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ∀𝑦(𝜑𝜓))
123, 11alrimi 2206 . 2 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} → ∀𝑥𝑦(𝜑𝜓))
13 ssopab2 5459 . 2 (∀𝑥𝑦(𝜑𝜓) → {⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓})
1412, 13impbii 208 1 ({⟨𝑥, 𝑦⟩ ∣ 𝜑} ⊆ {⟨𝑥, 𝑦⟩ ∣ 𝜓} ↔ ∀𝑥𝑦(𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wal 1537  wcel 2106  wss 3887  cop 4567  {copab 5136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-13 2372  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137
This theorem is referenced by:  eqopab2b  5465
  Copyright terms: Public domain W3C validator