Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opelopabf | Structured version Visualization version GIF version |
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 5448 uses bound-variable hypotheses in place of distinct variable conditions. (Contributed by NM, 19-Dec-2008.) |
Ref | Expression |
---|---|
opelopabf.x | ⊢ Ⅎ𝑥𝜓 |
opelopabf.y | ⊢ Ⅎ𝑦𝜒 |
opelopabf.1 | ⊢ 𝐴 ∈ V |
opelopabf.2 | ⊢ 𝐵 ∈ V |
opelopabf.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopabf.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opelopabf | ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopabsb 5436 | . 2 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑) | |
2 | opelopabf.1 | . . 3 ⊢ 𝐴 ∈ V | |
3 | nfcv 2906 | . . . . 5 ⊢ Ⅎ𝑥𝐵 | |
4 | opelopabf.x | . . . . 5 ⊢ Ⅎ𝑥𝜓 | |
5 | 3, 4 | nfsbcw 3733 | . . . 4 ⊢ Ⅎ𝑥[𝐵 / 𝑦]𝜓 |
6 | opelopabf.3 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | 6 | sbcbidv 3770 | . . . 4 ⊢ (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
8 | 5, 7 | sbciegf 3750 | . . 3 ⊢ (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓)) |
9 | 2, 8 | ax-mp 5 | . 2 ⊢ ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑 ↔ [𝐵 / 𝑦]𝜓) |
10 | opelopabf.2 | . . 3 ⊢ 𝐵 ∈ V | |
11 | opelopabf.y | . . . 4 ⊢ Ⅎ𝑦𝜒 | |
12 | opelopabf.4 | . . . 4 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
13 | 11, 12 | sbciegf 3750 | . . 3 ⊢ (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓 ↔ 𝜒)) |
14 | 10, 13 | ax-mp 5 | . 2 ⊢ ([𝐵 / 𝑦]𝜓 ↔ 𝜒) |
15 | 1, 9, 14 | 3bitri 296 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝑥, 𝑦〉 ∣ 𝜑} ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Vcvv 3422 [wsbc 3711 〈cop 4564 {copab 5132 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 |
This theorem is referenced by: pofun 5512 fmptco 6983 fmptcof2 30896 |
Copyright terms: Public domain | W3C validator |