MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelopabf Structured version   Visualization version   GIF version

Theorem opelopabf 5420
Description: The law of concretion. Theorem 9.5 of [Quine] p. 61. This version of opelopab 5417 uses bound-variable hypotheses in place of distinct variable conditions." (Contributed by NM, 19-Dec-2008.)
Hypotheses
Ref Expression
opelopabf.x 𝑥𝜓
opelopabf.y 𝑦𝜒
opelopabf.1 𝐴 ∈ V
opelopabf.2 𝐵 ∈ V
opelopabf.3 (𝑥 = 𝐴 → (𝜑𝜓))
opelopabf.4 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
opelopabf (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝜒(𝑥,𝑦)

Proof of Theorem opelopabf
StepHypRef Expression
1 opelopabsb 5405 . 2 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ [𝐴 / 𝑥][𝐵 / 𝑦]𝜑)
2 opelopabf.1 . . 3 𝐴 ∈ V
3 nfcv 2982 . . . . 5 𝑥𝐵
4 opelopabf.x . . . . 5 𝑥𝜓
53, 4nfsbcw 3780 . . . 4 𝑥[𝐵 / 𝑦]𝜓
6 opelopabf.3 . . . . 5 (𝑥 = 𝐴 → (𝜑𝜓))
76sbcbidv 3812 . . . 4 (𝑥 = 𝐴 → ([𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
85, 7sbciegf 3795 . . 3 (𝐴 ∈ V → ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓))
92, 8ax-mp 5 . 2 ([𝐴 / 𝑥][𝐵 / 𝑦]𝜑[𝐵 / 𝑦]𝜓)
10 opelopabf.2 . . 3 𝐵 ∈ V
11 opelopabf.y . . . 4 𝑦𝜒
12 opelopabf.4 . . . 4 (𝑦 = 𝐵 → (𝜓𝜒))
1311, 12sbciegf 3795 . . 3 (𝐵 ∈ V → ([𝐵 / 𝑦]𝜓𝜒))
1410, 13ax-mp 5 . 2 ([𝐵 / 𝑦]𝜓𝜒)
151, 9, 143bitri 300 1 (⟨𝐴, 𝐵⟩ ∈ {⟨𝑥, 𝑦⟩ ∣ 𝜑} ↔ 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209   = wceq 1538  wnf 1785  wcel 2115  Vcvv 3480  [wsbc 3758  cop 4556  {copab 5115
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5190  ax-nul 5197  ax-pr 5318
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-sn 4551  df-pr 4553  df-op 4557  df-opab 5116
This theorem is referenced by:  pofun  5479  fmptco  6884  fmptcof2  30421
  Copyright terms: Public domain W3C validator