Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrabdf | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
ssrabdf.1 | ⊢ Ⅎ𝑥𝐴 |
ssrabdf.2 | ⊢ Ⅎ𝑥𝐵 |
ssrabdf.3 | ⊢ Ⅎ𝑥𝜑 |
ssrabdf.4 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
ssrabdf.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
ssrabdf | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabdf.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | ssrabdf.3 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | ssrabdf.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
4 | 2, 3 | ralrimia 3237 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
5 | ssrabdf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | ssrabdf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | ssrabf 42877 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) |
8 | 1, 4, 7 | sylanbrc 584 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 Ⅎwnf 1783 ∈ wcel 2104 Ⅎwnfc 2884 ∀wral 3061 {crab 3330 ⊆ wss 3892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rab 3333 df-v 3439 df-in 3899 df-ss 3909 |
This theorem is referenced by: smfpimne2 44608 |
Copyright terms: Public domain | W3C validator |