Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrabdf Structured version   Visualization version   GIF version

Theorem ssrabdf 45116
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
ssrabdf.1 𝑥𝐴
ssrabdf.2 𝑥𝐵
ssrabdf.3 𝑥𝜑
ssrabdf.4 (𝜑𝐵𝐴)
ssrabdf.5 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdf (𝜑𝐵 ⊆ {𝑥𝐴𝜓})

Proof of Theorem ssrabdf
StepHypRef Expression
1 ssrabdf.4 . 2 (𝜑𝐵𝐴)
2 ssrabdf.3 . . 3 𝑥𝜑
3 ssrabdf.5 . . 3 ((𝜑𝑥𝐵) → 𝜓)
42, 3ralrimia 3237 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
5 ssrabdf.2 . . 3 𝑥𝐵
6 ssrabdf.1 . . 3 𝑥𝐴
75, 6ssrabf 45115 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
81, 4, 7sylanbrc 583 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wnfc 2877  wral 3045  {crab 3408  wss 3917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rab 3409  df-ss 3934
This theorem is referenced by:  smfpimne2  46845
  Copyright terms: Public domain W3C validator