| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrabdf | Structured version Visualization version GIF version | ||
| Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| ssrabdf.1 | ⊢ Ⅎ𝑥𝐴 |
| ssrabdf.2 | ⊢ Ⅎ𝑥𝐵 |
| ssrabdf.3 | ⊢ Ⅎ𝑥𝜑 |
| ssrabdf.4 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
| ssrabdf.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
| Ref | Expression |
|---|---|
| ssrabdf | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrabdf.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
| 2 | ssrabdf.3 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 3 | ssrabdf.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
| 4 | 2, 3 | ralrimia 3237 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
| 5 | ssrabdf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
| 6 | ssrabdf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 7 | 5, 6 | ssrabf 45115 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) |
| 8 | 1, 4, 7 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 ∀wral 3045 {crab 3408 ⊆ wss 3917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rab 3409 df-ss 3934 |
| This theorem is referenced by: smfpimne2 46845 |
| Copyright terms: Public domain | W3C validator |