Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ssrabdf | Structured version Visualization version GIF version |
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
ssrabdf.1 | ⊢ Ⅎ𝑥𝐴 |
ssrabdf.2 | ⊢ Ⅎ𝑥𝐵 |
ssrabdf.3 | ⊢ Ⅎ𝑥𝜑 |
ssrabdf.4 | ⊢ (𝜑 → 𝐵 ⊆ 𝐴) |
ssrabdf.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) |
Ref | Expression |
---|---|
ssrabdf | ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrabdf.4 | . 2 ⊢ (𝜑 → 𝐵 ⊆ 𝐴) | |
2 | ssrabdf.3 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
3 | ssrabdf.5 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝜓) | |
4 | 2, 3 | ralrimia 3237 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐵 𝜓) |
5 | ssrabdf.2 | . . 3 ⊢ Ⅎ𝑥𝐵 | |
6 | ssrabdf.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
7 | 5, 6 | ssrabf 42903 | . 2 ⊢ (𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓} ↔ (𝐵 ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝐵 𝜓)) |
8 | 1, 4, 7 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐵 ⊆ {𝑥 ∈ 𝐴 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 ∀wral 3061 {crab 3403 ⊆ wss 3896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ral 3062 df-rab 3404 df-v 3442 df-in 3903 df-ss 3913 |
This theorem is referenced by: smfpimne2 44634 |
Copyright terms: Public domain | W3C validator |