Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ssrabdf Structured version   Visualization version   GIF version

Theorem ssrabdf 43804
Description: Subclass of a restricted class abstraction (deduction form). (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
ssrabdf.1 𝑥𝐴
ssrabdf.2 𝑥𝐵
ssrabdf.3 𝑥𝜑
ssrabdf.4 (𝜑𝐵𝐴)
ssrabdf.5 ((𝜑𝑥𝐵) → 𝜓)
Assertion
Ref Expression
ssrabdf (𝜑𝐵 ⊆ {𝑥𝐴𝜓})

Proof of Theorem ssrabdf
StepHypRef Expression
1 ssrabdf.4 . 2 (𝜑𝐵𝐴)
2 ssrabdf.3 . . 3 𝑥𝜑
3 ssrabdf.5 . . 3 ((𝜑𝑥𝐵) → 𝜓)
42, 3ralrimia 3256 . 2 (𝜑 → ∀𝑥𝐵 𝜓)
5 ssrabdf.2 . . 3 𝑥𝐵
6 ssrabdf.1 . . 3 𝑥𝐴
75, 6ssrabf 43803 . 2 (𝐵 ⊆ {𝑥𝐴𝜓} ↔ (𝐵𝐴 ∧ ∀𝑥𝐵 𝜓))
81, 4, 7sylanbrc 584 1 (𝜑𝐵 ⊆ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  wnf 1786  wcel 2107  wnfc 2884  wral 3062  {crab 3433  wss 3949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3063  df-rab 3434  df-v 3477  df-in 3956  df-ss 3966
This theorem is referenced by:  smfpimne2  45556
  Copyright terms: Public domain W3C validator