![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne2 | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that π΄ is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfpimne2.p | β’ β²π₯π |
smfpimne2.x | β’ β²π₯πΉ |
smfpimne2.s | β’ (π β π β SAlg) |
smfpimne2.f | β’ (π β πΉ β (SMblFnβπ)) |
smfpimne2.d | β’ π· = dom πΉ |
Ref | Expression |
---|---|
smfpimne2 | β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne2.p | . . . 4 β’ β²π₯π | |
2 | nfv 1917 | . . . 4 β’ β²π₯ π΄ β β* | |
3 | 1, 2 | nfan 1902 | . . 3 β’ β²π₯(π β§ π΄ β β*) |
4 | smfpimne2.x | . . 3 β’ β²π₯πΉ | |
5 | smfpimne2.s | . . . 4 β’ (π β π β SAlg) | |
6 | 5 | adantr 481 | . . 3 β’ ((π β§ π΄ β β*) β π β SAlg) |
7 | smfpimne2.f | . . . 4 β’ (π β πΉ β (SMblFnβπ)) | |
8 | 7 | adantr 481 | . . 3 β’ ((π β§ π΄ β β*) β πΉ β (SMblFnβπ)) |
9 | smfpimne2.d | . . 3 β’ π· = dom πΉ | |
10 | simpr 485 | . . 3 β’ ((π β§ π΄ β β*) β π΄ β β*) | |
11 | 3, 4, 6, 8, 9, 10 | smfpimne 45545 | . 2 β’ ((π β§ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
12 | 4 | nfdm 5950 | . . . . . . 7 β’ β²π₯dom πΉ |
13 | 9, 12 | nfcxfr 2901 | . . . . . 6 β’ β²π₯π· |
14 | 13 | ssrab2f 43796 | . . . . 5 β’ {π₯ β π· β£ (πΉβπ₯) β π΄} β π· |
15 | 14 | a1i 11 | . . . 4 β’ ((π β§ Β¬ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} β π·) |
16 | nfv 1917 | . . . . . 6 β’ β²π₯ Β¬ π΄ β β* | |
17 | 1, 16 | nfan 1902 | . . . . 5 β’ β²π₯(π β§ Β¬ π΄ β β*) |
18 | ssidd 4005 | . . . . 5 β’ ((π β§ Β¬ π΄ β β*) β π· β π·) | |
19 | nne 2944 | . . . . . . . 8 β’ (Β¬ (πΉβπ₯) β π΄ β (πΉβπ₯) = π΄) | |
20 | simpr 485 | . . . . . . . . 9 β’ (((π β§ π₯ β π·) β§ (πΉβπ₯) = π΄) β (πΉβπ₯) = π΄) | |
21 | 5, 7, 9 | smff 45438 | . . . . . . . . . . . 12 β’ (π β πΉ:π·βΆβ) |
22 | 21 | ffvelcdmda 7086 | . . . . . . . . . . 11 β’ ((π β§ π₯ β π·) β (πΉβπ₯) β β) |
23 | 22 | rexrd 11263 | . . . . . . . . . 10 β’ ((π β§ π₯ β π·) β (πΉβπ₯) β β*) |
24 | 23 | adantr 481 | . . . . . . . . 9 β’ (((π β§ π₯ β π·) β§ (πΉβπ₯) = π΄) β (πΉβπ₯) β β*) |
25 | 20, 24 | eqeltrrd 2834 | . . . . . . . 8 β’ (((π β§ π₯ β π·) β§ (πΉβπ₯) = π΄) β π΄ β β*) |
26 | 19, 25 | sylan2b 594 | . . . . . . 7 β’ (((π β§ π₯ β π·) β§ Β¬ (πΉβπ₯) β π΄) β π΄ β β*) |
27 | 26 | adantllr 717 | . . . . . 6 β’ ((((π β§ Β¬ π΄ β β*) β§ π₯ β π·) β§ Β¬ (πΉβπ₯) β π΄) β π΄ β β*) |
28 | simpllr 774 | . . . . . 6 β’ ((((π β§ Β¬ π΄ β β*) β§ π₯ β π·) β§ Β¬ (πΉβπ₯) β π΄) β Β¬ π΄ β β*) | |
29 | 27, 28 | condan 816 | . . . . 5 β’ (((π β§ Β¬ π΄ β β*) β§ π₯ β π·) β (πΉβπ₯) β π΄) |
30 | 13, 13, 17, 18, 29 | ssrabdf 43794 | . . . 4 β’ ((π β§ Β¬ π΄ β β*) β π· β {π₯ β π· β£ (πΉβπ₯) β π΄}) |
31 | 15, 30 | eqssd 3999 | . . 3 β’ ((π β§ Β¬ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} = π·) |
32 | 5, 7, 9 | smfdmss 45439 | . . . . 5 β’ (π β π· β βͺ π) |
33 | 5, 32 | subsaluni 45066 | . . . 4 β’ (π β π· β (π βΎt π·)) |
34 | 33 | adantr 481 | . . 3 β’ ((π β§ Β¬ π΄ β β*) β π· β (π βΎt π·)) |
35 | 31, 34 | eqeltrd 2833 | . 2 β’ ((π β§ Β¬ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
36 | 11, 35 | pm2.61dan 811 | 1 β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 = wceq 1541 β²wnf 1785 β wcel 2106 β²wnfc 2883 β wne 2940 {crab 3432 β wss 3948 dom cdm 5676 βcfv 6543 (class class class)co 7408 βcr 11108 β*cxr 11246 βΎt crest 17365 SAlgcsalg 45014 SMblFncsmblfn 45401 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-inf2 9635 ax-cc 10429 ax-ac2 10457 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-er 8702 df-map 8821 df-pm 8822 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-sup 9436 df-inf 9437 df-card 9933 df-acn 9936 df-ac 10110 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-div 11871 df-nn 12212 df-n0 12472 df-z 12558 df-uz 12822 df-q 12932 df-rp 12974 df-ioo 13327 df-ico 13329 df-fl 13756 df-rest 17367 df-salg 45015 df-smblfn 45402 |
This theorem is referenced by: smfdivdmmbl2 45547 |
Copyright terms: Public domain | W3C validator |