Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  smfpimne2 Structured version   Visualization version   GIF version

Theorem smfpimne2 46963
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that 𝐴 is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.)
Hypotheses
Ref Expression
smfpimne2.p 𝑥𝜑
smfpimne2.x 𝑥𝐹
smfpimne2.s (𝜑𝑆 ∈ SAlg)
smfpimne2.f (𝜑𝐹 ∈ (SMblFn‘𝑆))
smfpimne2.d 𝐷 = dom 𝐹
Assertion
Ref Expression
smfpimne2 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} ∈ (𝑆t 𝐷))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐷(𝑥)   𝑆(𝑥)   𝐹(𝑥)

Proof of Theorem smfpimne2
StepHypRef Expression
1 smfpimne2.p . . . 4 𝑥𝜑
2 nfv 1915 . . . 4 𝑥 𝐴 ∈ ℝ*
31, 2nfan 1900 . . 3 𝑥(𝜑𝐴 ∈ ℝ*)
4 smfpimne2.x . . 3 𝑥𝐹
5 smfpimne2.s . . . 4 (𝜑𝑆 ∈ SAlg)
65adantr 480 . . 3 ((𝜑𝐴 ∈ ℝ*) → 𝑆 ∈ SAlg)
7 smfpimne2.f . . . 4 (𝜑𝐹 ∈ (SMblFn‘𝑆))
87adantr 480 . . 3 ((𝜑𝐴 ∈ ℝ*) → 𝐹 ∈ (SMblFn‘𝑆))
9 smfpimne2.d . . 3 𝐷 = dom 𝐹
10 simpr 484 . . 3 ((𝜑𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*)
113, 4, 6, 8, 9, 10smfpimne 46962 . 2 ((𝜑𝐴 ∈ ℝ*) → {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} ∈ (𝑆t 𝐷))
124nfdm 5895 . . . . . . 7 𝑥dom 𝐹
139, 12nfcxfr 2893 . . . . . 6 𝑥𝐷
1413ssrab2f 45239 . . . . 5 {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} ⊆ 𝐷
1514a1i 11 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} ⊆ 𝐷)
16 nfv 1915 . . . . . 6 𝑥 ¬ 𝐴 ∈ ℝ*
171, 16nfan 1900 . . . . 5 𝑥(𝜑 ∧ ¬ 𝐴 ∈ ℝ*)
18 ssidd 3954 . . . . 5 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷𝐷)
19 nne 2933 . . . . . . . 8 (¬ (𝐹𝑥) ≠ 𝐴 ↔ (𝐹𝑥) = 𝐴)
20 simpr 484 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ (𝐹𝑥) = 𝐴) → (𝐹𝑥) = 𝐴)
215, 7, 9smff 46855 . . . . . . . . . . . 12 (𝜑𝐹:𝐷⟶ℝ)
2221ffvelcdmda 7023 . . . . . . . . . . 11 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ)
2322rexrd 11169 . . . . . . . . . 10 ((𝜑𝑥𝐷) → (𝐹𝑥) ∈ ℝ*)
2423adantr 480 . . . . . . . . 9 (((𝜑𝑥𝐷) ∧ (𝐹𝑥) = 𝐴) → (𝐹𝑥) ∈ ℝ*)
2520, 24eqeltrrd 2834 . . . . . . . 8 (((𝜑𝑥𝐷) ∧ (𝐹𝑥) = 𝐴) → 𝐴 ∈ ℝ*)
2619, 25sylan2b 594 . . . . . . 7 (((𝜑𝑥𝐷) ∧ ¬ (𝐹𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*)
2726adantllr 719 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥𝐷) ∧ ¬ (𝐹𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*)
28 simpllr 775 . . . . . 6 ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥𝐷) ∧ ¬ (𝐹𝑥) ≠ 𝐴) → ¬ 𝐴 ∈ ℝ*)
2927, 28condan 817 . . . . 5 (((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥𝐷) → (𝐹𝑥) ≠ 𝐴)
3013, 13, 17, 18, 29ssrabdf 45237 . . . 4 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴})
3115, 30eqssd 3948 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} = 𝐷)
325, 7, 9smfdmss 46856 . . . . 5 (𝜑𝐷 𝑆)
335, 32subsaluni 46483 . . . 4 (𝜑𝐷 ∈ (𝑆t 𝐷))
3433adantr 480 . . 3 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ∈ (𝑆t 𝐷))
3531, 34eqeltrd 2833 . 2 ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} ∈ (𝑆t 𝐷))
3611, 35pm2.61dan 812 1 (𝜑 → {𝑥𝐷 ∣ (𝐹𝑥) ≠ 𝐴} ∈ (𝑆t 𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wnf 1784  wcel 2113  wnfc 2880  wne 2929  {crab 3396  wss 3898  dom cdm 5619  cfv 6486  (class class class)co 7352  cr 11012  *cxr 11152  t crest 17326  SAlgcsalg 46431  SMblFncsmblfn 46818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-inf2 9538  ax-cc 10333  ax-ac2 10361  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090  ax-pre-sup 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-sup 9333  df-inf 9334  df-card 9839  df-acn 9842  df-ac 10014  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-div 11782  df-nn 12133  df-n0 12389  df-z 12476  df-uz 12739  df-q 12849  df-rp 12893  df-ioo 13251  df-ico 13253  df-fl 13698  df-rest 17328  df-salg 46432  df-smblfn 46819
This theorem is referenced by:  smfdivdmmbl2  46964
  Copyright terms: Public domain W3C validator