Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne2 | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that 𝐴 is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfpimne2.p | ⊢ Ⅎ𝑥𝜑 |
smfpimne2.x | ⊢ Ⅎ𝑥𝐹 |
smfpimne2.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimne2.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpimne2.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
smfpimne2 | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1916 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ ℝ* | |
3 | 1, 2 | nfan 1901 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐴 ∈ ℝ*) |
4 | smfpimne2.x | . . 3 ⊢ Ⅎ𝑥𝐹 | |
5 | smfpimne2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | 5 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝑆 ∈ SAlg) |
7 | smfpimne2.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
8 | 7 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ (SMblFn‘𝑆)) |
9 | smfpimne2.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
10 | simpr 485 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
11 | 3, 4, 6, 8, 9, 10 | smfpimne 44633 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
12 | 4 | nfdm 5879 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
13 | 9, 12 | nfcxfr 2902 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
14 | 13 | ssrab2f 42906 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷 |
15 | 14 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷) |
16 | nfv 1916 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐴 ∈ ℝ* | |
17 | 1, 16 | nfan 1901 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐴 ∈ ℝ*) |
18 | ssidd 3953 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ 𝐷) | |
19 | nne 2944 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑥) ≠ 𝐴 ↔ (𝐹‘𝑥) = 𝐴) | |
20 | simpr 485 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) = 𝐴) | |
21 | 5, 7, 9 | smff 44526 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
22 | 21 | ffvelcdmda 7000 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
23 | 22 | rexrd 11104 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ*) |
24 | 23 | adantr 481 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
25 | 20, 24 | eqeltrrd 2838 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → 𝐴 ∈ ℝ*) |
26 | 19, 25 | sylan2b 594 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
27 | 26 | adantllr 716 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
28 | simpllr 773 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → ¬ 𝐴 ∈ ℝ*) | |
29 | 27, 28 | condan 815 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ≠ 𝐴) |
30 | 13, 13, 17, 18, 29 | ssrabdf 42904 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴}) |
31 | 15, 30 | eqssd 3947 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} = 𝐷) |
32 | 5, 7, 9 | smfdmss 44527 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
33 | 5, 32 | subsaluni 44154 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
34 | 33 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
35 | 31, 34 | eqeltrd 2837 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
36 | 11, 35 | pm2.61dan 810 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1540 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2884 ≠ wne 2940 {crab 3403 ⊆ wss 3896 dom cdm 5607 ‘cfv 6465 (class class class)co 7316 ℝcr 10949 ℝ*cxr 11087 ↾t crest 17205 SAlgcsalg 44104 SMblFncsmblfn 44489 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5223 ax-sep 5237 ax-nul 5244 ax-pow 5302 ax-pr 5366 ax-un 7629 ax-inf2 9476 ax-cc 10270 ax-ac2 10298 ax-cnex 11006 ax-resscn 11007 ax-1cn 11008 ax-icn 11009 ax-addcl 11010 ax-addrcl 11011 ax-mulcl 11012 ax-mulrcl 11013 ax-mulcom 11014 ax-addass 11015 ax-mulass 11016 ax-distr 11017 ax-i2m1 11018 ax-1ne0 11019 ax-1rid 11020 ax-rnegex 11021 ax-rrecex 11022 ax-cnre 11023 ax-pre-lttri 11024 ax-pre-lttrn 11025 ax-pre-ltadd 11026 ax-pre-mulgt0 11027 ax-pre-sup 11028 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3442 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4471 df-pw 4546 df-sn 4571 df-pr 4573 df-op 4577 df-uni 4850 df-int 4892 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5170 df-tr 5204 df-id 5506 df-eprel 5512 df-po 5520 df-so 5521 df-fr 5562 df-se 5563 df-we 5564 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-pred 6224 df-ord 6291 df-on 6292 df-lim 6293 df-suc 6294 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-isom 6474 df-riota 7273 df-ov 7319 df-oprab 7320 df-mpo 7321 df-om 7759 df-1st 7877 df-2nd 7878 df-frecs 8145 df-wrecs 8176 df-recs 8250 df-rdg 8289 df-1o 8345 df-er 8547 df-map 8666 df-pm 8667 df-en 8783 df-dom 8784 df-sdom 8785 df-fin 8786 df-sup 9277 df-inf 9278 df-card 9774 df-acn 9777 df-ac 9951 df-pnf 11090 df-mnf 11091 df-xr 11092 df-ltxr 11093 df-le 11094 df-sub 11286 df-neg 11287 df-div 11712 df-nn 12053 df-n0 12313 df-z 12399 df-uz 12662 df-q 12768 df-rp 12810 df-ioo 13162 df-ico 13164 df-fl 13591 df-rest 17207 df-salg 44105 df-smblfn 44490 |
This theorem is referenced by: smfdivdmmbl2 44635 |
Copyright terms: Public domain | W3C validator |