| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne2 | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that 𝐴 is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfpimne2.p | ⊢ Ⅎ𝑥𝜑 |
| smfpimne2.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimne2.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimne2.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimne2.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| smfpimne2 | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfpimne2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ ℝ* | |
| 3 | 1, 2 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐴 ∈ ℝ*) |
| 4 | smfpimne2.x | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfpimne2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝑆 ∈ SAlg) |
| 7 | smfpimne2.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 9 | smfpimne2.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
| 11 | 3, 4, 6, 8, 9, 10 | smfpimne 46962 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 12 | 4 | nfdm 5895 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
| 13 | 9, 12 | nfcxfr 2893 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
| 14 | 13 | ssrab2f 45239 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷 |
| 15 | 14 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷) |
| 16 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐴 ∈ ℝ* | |
| 17 | 1, 16 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐴 ∈ ℝ*) |
| 18 | ssidd 3954 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ 𝐷) | |
| 19 | nne 2933 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑥) ≠ 𝐴 ↔ (𝐹‘𝑥) = 𝐴) | |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) = 𝐴) | |
| 21 | 5, 7, 9 | smff 46855 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 22 | 21 | ffvelcdmda 7023 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
| 23 | 22 | rexrd 11169 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ*) |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 25 | 20, 24 | eqeltrrd 2834 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → 𝐴 ∈ ℝ*) |
| 26 | 19, 25 | sylan2b 594 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
| 27 | 26 | adantllr 719 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
| 28 | simpllr 775 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → ¬ 𝐴 ∈ ℝ*) | |
| 29 | 27, 28 | condan 817 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ≠ 𝐴) |
| 30 | 13, 13, 17, 18, 29 | ssrabdf 45237 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴}) |
| 31 | 15, 30 | eqssd 3948 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} = 𝐷) |
| 32 | 5, 7, 9 | smfdmss 46856 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 33 | 5, 32 | subsaluni 46483 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 35 | 31, 34 | eqeltrd 2833 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 36 | 11, 35 | pm2.61dan 812 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ≠ wne 2929 {crab 3396 ⊆ wss 3898 dom cdm 5619 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 ℝ*cxr 11152 ↾t crest 17326 SAlgcsalg 46431 SMblFncsmblfn 46818 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cc 10333 ax-ac2 10361 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-card 9839 df-acn 9842 df-ac 10014 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-rp 12893 df-ioo 13251 df-ico 13253 df-fl 13698 df-rest 17328 df-salg 46432 df-smblfn 46819 |
| This theorem is referenced by: smfdivdmmbl2 46964 |
| Copyright terms: Public domain | W3C validator |