![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne2 | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that 𝐴 is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfpimne2.p | ⊢ Ⅎ𝑥𝜑 |
smfpimne2.x | ⊢ Ⅎ𝑥𝐹 |
smfpimne2.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
smfpimne2.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
smfpimne2.d | ⊢ 𝐷 = dom 𝐹 |
Ref | Expression |
---|---|
smfpimne2 | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1913 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ ℝ* | |
3 | 1, 2 | nfan 1898 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐴 ∈ ℝ*) |
4 | smfpimne2.x | . . 3 ⊢ Ⅎ𝑥𝐹 | |
5 | smfpimne2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝑆 ∈ SAlg) |
7 | smfpimne2.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ (SMblFn‘𝑆)) |
9 | smfpimne2.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
11 | 3, 4, 6, 8, 9, 10 | smfpimne 46760 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
12 | 4 | nfdm 5976 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
13 | 9, 12 | nfcxfr 2906 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
14 | 13 | ssrab2f 45019 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷 |
15 | 14 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷) |
16 | nfv 1913 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐴 ∈ ℝ* | |
17 | 1, 16 | nfan 1898 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐴 ∈ ℝ*) |
18 | ssidd 4032 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ 𝐷) | |
19 | nne 2950 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑥) ≠ 𝐴 ↔ (𝐹‘𝑥) = 𝐴) | |
20 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) = 𝐴) | |
21 | 5, 7, 9 | smff 46653 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
22 | 21 | ffvelcdmda 7118 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
23 | 22 | rexrd 11340 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ*) |
24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
25 | 20, 24 | eqeltrrd 2845 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → 𝐴 ∈ ℝ*) |
26 | 19, 25 | sylan2b 593 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
27 | 26 | adantllr 718 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
28 | simpllr 775 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → ¬ 𝐴 ∈ ℝ*) | |
29 | 27, 28 | condan 817 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ≠ 𝐴) |
30 | 13, 13, 17, 18, 29 | ssrabdf 45017 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴}) |
31 | 15, 30 | eqssd 4026 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} = 𝐷) |
32 | 5, 7, 9 | smfdmss 46654 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
33 | 5, 32 | subsaluni 46281 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
35 | 31, 34 | eqeltrd 2844 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
36 | 11, 35 | pm2.61dan 812 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 Ⅎwnf 1781 ∈ wcel 2108 Ⅎwnfc 2893 ≠ wne 2946 {crab 3443 ⊆ wss 3976 dom cdm 5700 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 ℝ*cxr 11323 ↾t crest 17480 SAlgcsalg 46229 SMblFncsmblfn 46616 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-inf2 9710 ax-cc 10504 ax-ac2 10532 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-card 10008 df-acn 10011 df-ac 10185 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-n0 12554 df-z 12640 df-uz 12904 df-q 13014 df-rp 13058 df-ioo 13411 df-ico 13413 df-fl 13843 df-rest 17482 df-salg 46230 df-smblfn 46617 |
This theorem is referenced by: smfdivdmmbl2 46762 |
Copyright terms: Public domain | W3C validator |