| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne2 | Structured version Visualization version GIF version | ||
| Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that 𝐴 is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
| Ref | Expression |
|---|---|
| smfpimne2.p | ⊢ Ⅎ𝑥𝜑 |
| smfpimne2.x | ⊢ Ⅎ𝑥𝐹 |
| smfpimne2.s | ⊢ (𝜑 → 𝑆 ∈ SAlg) |
| smfpimne2.f | ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) |
| smfpimne2.d | ⊢ 𝐷 = dom 𝐹 |
| Ref | Expression |
|---|---|
| smfpimne2 | ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | smfpimne2.p | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1915 | . . . 4 ⊢ Ⅎ𝑥 𝐴 ∈ ℝ* | |
| 3 | 1, 2 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝜑 ∧ 𝐴 ∈ ℝ*) |
| 4 | smfpimne2.x | . . 3 ⊢ Ⅎ𝑥𝐹 | |
| 5 | smfpimne2.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ SAlg) | |
| 6 | 5 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝑆 ∈ SAlg) |
| 7 | smfpimne2.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ (SMblFn‘𝑆)) | |
| 8 | 7 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐹 ∈ (SMblFn‘𝑆)) |
| 9 | smfpimne2.d | . . 3 ⊢ 𝐷 = dom 𝐹 | |
| 10 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → 𝐴 ∈ ℝ*) | |
| 11 | 3, 4, 6, 8, 9, 10 | smfpimne 46883 | . 2 ⊢ ((𝜑 ∧ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 12 | 4 | nfdm 5891 | . . . . . . 7 ⊢ Ⅎ𝑥dom 𝐹 |
| 13 | 9, 12 | nfcxfr 2892 | . . . . . 6 ⊢ Ⅎ𝑥𝐷 |
| 14 | 13 | ssrab2f 45160 | . . . . 5 ⊢ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷 |
| 15 | 14 | a1i 11 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ⊆ 𝐷) |
| 16 | nfv 1915 | . . . . . 6 ⊢ Ⅎ𝑥 ¬ 𝐴 ∈ ℝ* | |
| 17 | 1, 16 | nfan 1900 | . . . . 5 ⊢ Ⅎ𝑥(𝜑 ∧ ¬ 𝐴 ∈ ℝ*) |
| 18 | ssidd 3958 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ 𝐷) | |
| 19 | nne 2932 | . . . . . . . 8 ⊢ (¬ (𝐹‘𝑥) ≠ 𝐴 ↔ (𝐹‘𝑥) = 𝐴) | |
| 20 | simpr 484 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) = 𝐴) | |
| 21 | 5, 7, 9 | smff 46776 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐹:𝐷⟶ℝ) |
| 22 | 21 | ffvelcdmda 7017 | . . . . . . . . . . 11 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ) |
| 23 | 22 | rexrd 11162 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ∈ ℝ*) |
| 24 | 23 | adantr 480 | . . . . . . . . 9 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → (𝐹‘𝑥) ∈ ℝ*) |
| 25 | 20, 24 | eqeltrrd 2832 | . . . . . . . 8 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ (𝐹‘𝑥) = 𝐴) → 𝐴 ∈ ℝ*) |
| 26 | 19, 25 | sylan2b 594 | . . . . . . 7 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
| 27 | 26 | adantllr 719 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → 𝐴 ∈ ℝ*) |
| 28 | simpllr 775 | . . . . . 6 ⊢ ((((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) ∧ ¬ (𝐹‘𝑥) ≠ 𝐴) → ¬ 𝐴 ∈ ℝ*) | |
| 29 | 27, 28 | condan 817 | . . . . 5 ⊢ (((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) ∧ 𝑥 ∈ 𝐷) → (𝐹‘𝑥) ≠ 𝐴) |
| 30 | 13, 13, 17, 18, 29 | ssrabdf 45158 | . . . 4 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ⊆ {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴}) |
| 31 | 15, 30 | eqssd 3952 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} = 𝐷) |
| 32 | 5, 7, 9 | smfdmss 46777 | . . . . 5 ⊢ (𝜑 → 𝐷 ⊆ ∪ 𝑆) |
| 33 | 5, 32 | subsaluni 46404 | . . . 4 ⊢ (𝜑 → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 34 | 33 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → 𝐷 ∈ (𝑆 ↾t 𝐷)) |
| 35 | 31, 34 | eqeltrd 2831 | . 2 ⊢ ((𝜑 ∧ ¬ 𝐴 ∈ ℝ*) → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| 36 | 11, 35 | pm2.61dan 812 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐷 ∣ (𝐹‘𝑥) ≠ 𝐴} ∈ (𝑆 ↾t 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 Ⅎwnfc 2879 ≠ wne 2928 {crab 3395 ⊆ wss 3902 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 ℝcr 11005 ℝ*cxr 11145 ↾t crest 17324 SAlgcsalg 46352 SMblFncsmblfn 46739 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-inf2 9531 ax-cc 10326 ax-ac2 10354 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-pre-sup 11084 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-iin 4944 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-pm 8753 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-sup 9326 df-inf 9327 df-card 9832 df-acn 9835 df-ac 10007 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-div 11775 df-nn 12126 df-n0 12382 df-z 12469 df-uz 12733 df-q 12847 df-rp 12891 df-ioo 13249 df-ico 13251 df-fl 13696 df-rest 17326 df-salg 46353 df-smblfn 46740 |
| This theorem is referenced by: smfdivdmmbl2 46885 |
| Copyright terms: Public domain | W3C validator |