![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > smfpimne2 | Structured version Visualization version GIF version |
Description: Given a function measurable w.r.t. to a sigma-algebra, the preimage of reals that are different from a value is in the subspace sigma-algebra induced by its domain. Notice that π΄ is not assumed to be an extended real. (Contributed by Glauco Siliprandi, 5-Jan-2025.) |
Ref | Expression |
---|---|
smfpimne2.p | β’ β²π₯π |
smfpimne2.x | β’ β²π₯πΉ |
smfpimne2.s | β’ (π β π β SAlg) |
smfpimne2.f | β’ (π β πΉ β (SMblFnβπ)) |
smfpimne2.d | β’ π· = dom πΉ |
Ref | Expression |
---|---|
smfpimne2 | β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | smfpimne2.p | . . . 4 β’ β²π₯π | |
2 | nfv 1909 | . . . 4 β’ β²π₯ π΄ β β* | |
3 | 1, 2 | nfan 1894 | . . 3 β’ β²π₯(π β§ π΄ β β*) |
4 | smfpimne2.x | . . 3 β’ β²π₯πΉ | |
5 | smfpimne2.s | . . . 4 β’ (π β π β SAlg) | |
6 | 5 | adantr 480 | . . 3 β’ ((π β§ π΄ β β*) β π β SAlg) |
7 | smfpimne2.f | . . . 4 β’ (π β πΉ β (SMblFnβπ)) | |
8 | 7 | adantr 480 | . . 3 β’ ((π β§ π΄ β β*) β πΉ β (SMblFnβπ)) |
9 | smfpimne2.d | . . 3 β’ π· = dom πΉ | |
10 | simpr 484 | . . 3 β’ ((π β§ π΄ β β*) β π΄ β β*) | |
11 | 3, 4, 6, 8, 9, 10 | smfpimne 46127 | . 2 β’ ((π β§ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
12 | 4 | nfdm 5944 | . . . . . . 7 β’ β²π₯dom πΉ |
13 | 9, 12 | nfcxfr 2895 | . . . . . 6 β’ β²π₯π· |
14 | 13 | ssrab2f 44381 | . . . . 5 β’ {π₯ β π· β£ (πΉβπ₯) β π΄} β π· |
15 | 14 | a1i 11 | . . . 4 β’ ((π β§ Β¬ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} β π·) |
16 | nfv 1909 | . . . . . 6 β’ β²π₯ Β¬ π΄ β β* | |
17 | 1, 16 | nfan 1894 | . . . . 5 β’ β²π₯(π β§ Β¬ π΄ β β*) |
18 | ssidd 4000 | . . . . 5 β’ ((π β§ Β¬ π΄ β β*) β π· β π·) | |
19 | nne 2938 | . . . . . . . 8 β’ (Β¬ (πΉβπ₯) β π΄ β (πΉβπ₯) = π΄) | |
20 | simpr 484 | . . . . . . . . 9 β’ (((π β§ π₯ β π·) β§ (πΉβπ₯) = π΄) β (πΉβπ₯) = π΄) | |
21 | 5, 7, 9 | smff 46020 | . . . . . . . . . . . 12 β’ (π β πΉ:π·βΆβ) |
22 | 21 | ffvelcdmda 7080 | . . . . . . . . . . 11 β’ ((π β§ π₯ β π·) β (πΉβπ₯) β β) |
23 | 22 | rexrd 11268 | . . . . . . . . . 10 β’ ((π β§ π₯ β π·) β (πΉβπ₯) β β*) |
24 | 23 | adantr 480 | . . . . . . . . 9 β’ (((π β§ π₯ β π·) β§ (πΉβπ₯) = π΄) β (πΉβπ₯) β β*) |
25 | 20, 24 | eqeltrrd 2828 | . . . . . . . 8 β’ (((π β§ π₯ β π·) β§ (πΉβπ₯) = π΄) β π΄ β β*) |
26 | 19, 25 | sylan2b 593 | . . . . . . 7 β’ (((π β§ π₯ β π·) β§ Β¬ (πΉβπ₯) β π΄) β π΄ β β*) |
27 | 26 | adantllr 716 | . . . . . 6 β’ ((((π β§ Β¬ π΄ β β*) β§ π₯ β π·) β§ Β¬ (πΉβπ₯) β π΄) β π΄ β β*) |
28 | simpllr 773 | . . . . . 6 β’ ((((π β§ Β¬ π΄ β β*) β§ π₯ β π·) β§ Β¬ (πΉβπ₯) β π΄) β Β¬ π΄ β β*) | |
29 | 27, 28 | condan 815 | . . . . 5 β’ (((π β§ Β¬ π΄ β β*) β§ π₯ β π·) β (πΉβπ₯) β π΄) |
30 | 13, 13, 17, 18, 29 | ssrabdf 44379 | . . . 4 β’ ((π β§ Β¬ π΄ β β*) β π· β {π₯ β π· β£ (πΉβπ₯) β π΄}) |
31 | 15, 30 | eqssd 3994 | . . 3 β’ ((π β§ Β¬ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} = π·) |
32 | 5, 7, 9 | smfdmss 46021 | . . . . 5 β’ (π β π· β βͺ π) |
33 | 5, 32 | subsaluni 45648 | . . . 4 β’ (π β π· β (π βΎt π·)) |
34 | 33 | adantr 480 | . . 3 β’ ((π β§ Β¬ π΄ β β*) β π· β (π βΎt π·)) |
35 | 31, 34 | eqeltrd 2827 | . 2 β’ ((π β§ Β¬ π΄ β β*) β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
36 | 11, 35 | pm2.61dan 810 | 1 β’ (π β {π₯ β π· β£ (πΉβπ₯) β π΄} β (π βΎt π·)) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 = wceq 1533 β²wnf 1777 β wcel 2098 β²wnfc 2877 β wne 2934 {crab 3426 β wss 3943 dom cdm 5669 βcfv 6537 (class class class)co 7405 βcr 11111 β*cxr 11251 βΎt crest 17375 SAlgcsalg 45596 SMblFncsmblfn 45983 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-inf2 9638 ax-cc 10432 ax-ac2 10460 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 ax-pre-sup 11190 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-isom 6546 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-map 8824 df-pm 8825 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-sup 9439 df-inf 9440 df-card 9936 df-acn 9939 df-ac 10113 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-div 11876 df-nn 12217 df-n0 12477 df-z 12563 df-uz 12827 df-q 12937 df-rp 12981 df-ioo 13334 df-ico 13336 df-fl 13763 df-rest 17377 df-salg 45597 df-smblfn 45984 |
This theorem is referenced by: smfdivdmmbl2 46129 |
Copyright terms: Public domain | W3C validator |