Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliin2 Structured version   Visualization version   GIF version

Theorem eliin2 40943
 Description: Membership in indexed intersection. See eliincex 40937 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4836 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 40931). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
eliin2 (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem eliin2
StepHypRef Expression
1 nfcv 2951 . 2 𝑥𝐵
21eliin2f 40931 1 (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 207   ∈ wcel 2083   ≠ wne 2986  ∀wral 3107  ∅c0 4217  ∩ ciin 4832 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-nul 4218  df-iin 4834 This theorem is referenced by:  eliuniin2  40947  allbutfi  41227
 Copyright terms: Public domain W3C validator