![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliin2 | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. See eliincex 44261 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 5002 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 44255). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eliin2 | ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2902 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | 1 | eliin2f 44255 | 1 ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ≠ wne 2939 ∀wral 3060 ∅c0 4322 ∩ ciin 4998 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-nul 4323 df-iin 5000 |
This theorem is referenced by: eliuniin2 44271 allbutfi 44562 |
Copyright terms: Public domain | W3C validator |