Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > eliin2 | Structured version Visualization version GIF version |
Description: Membership in indexed intersection. See eliincex 42182 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4883 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 42176). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
eliin2 | ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2899 | . 2 ⊢ Ⅎ𝑥𝐵 | |
2 | 1 | eliin2f 42176 | 1 ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∈ wcel 2113 ≠ wne 2934 ∀wral 3053 ∅c0 4209 ∩ ciin 4879 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-v 3399 df-sbc 3680 df-csb 3789 df-dif 3844 df-nul 4210 df-iin 4881 |
This theorem is referenced by: eliuniin2 42191 allbutfi 42455 |
Copyright terms: Public domain | W3C validator |