Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliin2 Structured version   Visualization version   GIF version

Theorem eliin2 42665
Description: Membership in indexed intersection. See eliincex 42660 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4929 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 42654). (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
eliin2 (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hint:   𝐶(𝑥)

Proof of Theorem eliin2
StepHypRef Expression
1 nfcv 2907 . 2 𝑥𝐵
21eliin2f 42654 1 (𝐵 ≠ ∅ → (𝐴 𝑥𝐵 𝐶 ↔ ∀𝑥𝐵 𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2106  wne 2943  wral 3064  c0 4256   ciin 4925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-nul 4257  df-iin 4927
This theorem is referenced by:  eliuniin2  42669  allbutfi  42933
  Copyright terms: Public domain W3C validator