| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > eliin2 | Structured version Visualization version GIF version | ||
| Description: Membership in indexed intersection. See eliincex 45104 for a counterexample showing that the precondition 𝐵 ≠ ∅ cannot be simply dropped. eliin 4960 uses an alternative precondition (and it doesn't have a disjoint var constraint between 𝐵 and 𝑥; see eliin2f 45098). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
| Ref | Expression |
|---|---|
| eliin2 | ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2891 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 2 | 1 | eliin2f 45098 | 1 ⊢ (𝐵 ≠ ∅ → (𝐴 ∈ ∩ 𝑥 ∈ 𝐵 𝐶 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∅c0 4296 ∩ ciin 4956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-nul 4297 df-iin 4958 |
| This theorem is referenced by: eliuniin2 45114 allbutfi 45389 |
| Copyright terms: Public domain | W3C validator |