Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucdifsn | Structured version Visualization version GIF version |
Description: The difference between the successor and the singleton of a class is the class. (Contributed by Peter Mazsa, 20-Sep-2024.) |
Ref | Expression |
---|---|
sucdifsn | ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6287 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | difeq1i 4059 | . 2 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
3 | sucdifsn2 36445 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 | |
4 | 2, 3 | eqtri 2764 | 1 ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ∖ cdif 3889 ∪ cun 3890 {csn 4565 suc csuc 6283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 ax-reg 9399 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3333 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-nul 4263 df-sn 4566 df-pr 4568 df-suc 6287 |
This theorem is referenced by: partsuc 36994 |
Copyright terms: Public domain | W3C validator |