| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sucdifsn | Structured version Visualization version GIF version | ||
| Description: The difference between the successor and the singleton of a class is the class. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| sucdifsn | ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-suc 6313 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
| 2 | 1 | difeq1i 4073 | . 2 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
| 3 | sucdifsn2 38222 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 | |
| 4 | 2, 3 | eqtri 2752 | 1 ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∖ cdif 3900 ∪ cun 3901 {csn 4577 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-pr 5371 ax-reg 9484 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-nul 4285 df-sn 4578 df-suc 6313 |
| This theorem is referenced by: partsuc 38768 |
| Copyright terms: Public domain | W3C validator |