![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sucdifsn | Structured version Visualization version GIF version |
Description: The difference between the successor and the singleton of a class is the class. (Contributed by Peter Mazsa, 20-Sep-2024.) |
Ref | Expression |
---|---|
sucdifsn | ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-suc 6380 | . . 3 ⊢ suc 𝐴 = (𝐴 ∪ {𝐴}) | |
2 | 1 | difeq1i 4118 | . 2 ⊢ (suc 𝐴 ∖ {𝐴}) = ((𝐴 ∪ {𝐴}) ∖ {𝐴}) |
3 | sucdifsn2 37749 | . 2 ⊢ ((𝐴 ∪ {𝐴}) ∖ {𝐴}) = 𝐴 | |
4 | 2, 3 | eqtri 2756 | 1 ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∖ cdif 3946 ∪ cun 3947 {csn 4632 suc csuc 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-pr 5433 ax-reg 9625 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-nul 4327 df-sn 4633 df-pr 4635 df-suc 6380 |
This theorem is referenced by: partsuc 38292 |
Copyright terms: Public domain | W3C validator |