| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partsuc | Structured version Visualization version GIF version | ||
| Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| partsuc | ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressucdifsn 38520 | . 2 ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | |
| 2 | sucdifsn 38518 | . 2 ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 | |
| 3 | parteq12 38894 | . 2 ⊢ ((((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) ∧ (suc 𝐴 ∖ {𝐴}) = 𝐴) → (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ∖ cdif 3895 {csn 4575 ↾ cres 5621 suc csuc 6313 Part wpart 38281 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-reg 9485 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-suc 6317 df-ec 8630 df-qs 8634 df-coss 38533 df-cnvrefrel 38639 df-dmqs 38755 df-funALTV 38800 df-disjALTV 38823 df-part 38884 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |