Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partsuc Structured version   Visualization version   GIF version

Theorem partsuc 38161
Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.)
Assertion
Ref Expression
partsuc (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴)

Proof of Theorem partsuc
StepHypRef Expression
1 ressucdifsn 37622 . 2 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
2 sucdifsn 37616 . 2 (suc 𝐴 ∖ {𝐴}) = 𝐴
3 parteq12 38157 . 2 ((((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴) ∧ (suc 𝐴 ∖ {𝐴}) = 𝐴) → (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴))
41, 2, 3mp2an 689 1 (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  cdif 3940  {csn 4623  cres 5671  suc csuc 6359   Part wpart 37593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-reg 9586
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-suc 6363  df-ec 8704  df-qs 8708  df-coss 37792  df-cnvrefrel 37908  df-dmqs 38020  df-funALTV 38063  df-disjALTV 38086  df-part 38147
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator