| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partsuc | Structured version Visualization version GIF version | ||
| Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| partsuc | ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressucdifsn 38268 | . 2 ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | |
| 2 | sucdifsn 38262 | . 2 ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 | |
| 3 | parteq12 38799 | . 2 ⊢ ((((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) ∧ (suc 𝐴 ∖ {𝐴}) = 𝐴) → (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3928 {csn 4606 ↾ cres 5661 suc csuc 6359 Part wpart 38243 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-reg 9611 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-suc 6363 df-ec 8726 df-qs 8730 df-coss 38434 df-cnvrefrel 38550 df-dmqs 38662 df-funALTV 38705 df-disjALTV 38728 df-part 38789 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |