Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partsuc Structured version   Visualization version   GIF version

Theorem partsuc 37650
Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.)
Assertion
Ref Expression
partsuc (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴)

Proof of Theorem partsuc
StepHypRef Expression
1 ressucdifsn 37111 . 2 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
2 sucdifsn 37105 . 2 (suc 𝐴 ∖ {𝐴}) = 𝐴
3 parteq12 37646 . 2 ((((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴) ∧ (suc 𝐴 ∖ {𝐴}) = 𝐴) → (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴))
41, 2, 3mp2an 691 1 (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1542  cdif 3946  {csn 4629  cres 5679  suc csuc 6367   Part wpart 37082
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-reg 9587
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-ec 8705  df-qs 8709  df-coss 37281  df-cnvrefrel 37397  df-dmqs 37509  df-funALTV 37552  df-disjALTV 37575  df-part 37636
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator