| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > partsuc | Structured version Visualization version GIF version | ||
| Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.) |
| Ref | Expression |
|---|---|
| partsuc | ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressucdifsn 38233 | . 2 ⊢ ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) | |
| 2 | sucdifsn 38227 | . 2 ⊢ (suc 𝐴 ∖ {𝐴}) = 𝐴 | |
| 3 | parteq12 38768 | . 2 ⊢ ((((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅 ↾ 𝐴) ∧ (suc 𝐴 ∖ {𝐴}) = 𝐴) → (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴)) | |
| 4 | 1, 2, 3 | mp2an 692 | 1 ⊢ (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅 ↾ 𝐴) Part 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∖ cdif 3911 {csn 4589 ↾ cres 5640 suc csuc 6334 Part wpart 38208 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-reg 9545 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-suc 6338 df-ec 8673 df-qs 8677 df-coss 38402 df-cnvrefrel 38518 df-dmqs 38630 df-funALTV 38674 df-disjALTV 38697 df-part 38758 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |