Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  partsuc Structured version   Visualization version   GIF version

Theorem partsuc 38817
Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024.)
Assertion
Ref Expression
partsuc (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴)

Proof of Theorem partsuc
StepHypRef Expression
1 ressucdifsn 38278 . 2 ((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴)
2 sucdifsn 38272 . 2 (suc 𝐴 ∖ {𝐴}) = 𝐴
3 parteq12 38813 . 2 ((((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) = (𝑅𝐴) ∧ (suc 𝐴 ∖ {𝐴}) = 𝐴) → (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴))
41, 2, 3mp2an 692 1 (((𝑅 ↾ suc 𝐴) ∖ (𝑅 ↾ {𝐴})) Part (suc 𝐴 ∖ {𝐴}) ↔ (𝑅𝐴) Part 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1541  cdif 3899  {csn 4576  cres 5618  suc csuc 6308   Part wpart 38253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-reg 9478
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-suc 6312  df-ec 8624  df-qs 8628  df-coss 38447  df-cnvrefrel 38563  df-dmqs 38675  df-funALTV 38719  df-disjALTV 38742  df-part 38803
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator