Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjresin Structured version   Visualization version   GIF version

Theorem disjresin 38214
Description: The restriction to a disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
disjresin ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = ∅)

Proof of Theorem disjresin
StepHypRef Expression
1 reseq2 5925 . 2 ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = (𝑅 ↾ ∅))
2 res0 5934 . 2 (𝑅 ↾ ∅) = ∅
31, 2eqtrdi 2780 1 ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  cin 3902  c0 4284  cres 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-opab 5155  df-xp 5625  df-res 5631
This theorem is referenced by:  disjresdisj  38215
  Copyright terms: Public domain W3C validator