Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  disjresin Structured version   Visualization version   GIF version

Theorem disjresin 38221
Description: The restriction to a disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024.)
Assertion
Ref Expression
disjresin ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = ∅)

Proof of Theorem disjresin
StepHypRef Expression
1 reseq2 5995 . 2 ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = (𝑅 ↾ ∅))
2 res0 6004 . 2 (𝑅 ↾ ∅) = ∅
31, 2eqtrdi 2791 1 ((𝐴𝐵) = ∅ → (𝑅 ↾ (𝐴𝐵)) = ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  cin 3962  c0 4339  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695  df-res 5701
This theorem is referenced by:  disjresdisj  38222
  Copyright terms: Public domain W3C validator