| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresin | Structured version Visualization version GIF version | ||
| Description: The restriction to a disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| disjresin | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 5922 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = (𝑅 ↾ ∅)) | |
| 2 | res0 5931 | . 2 ⊢ (𝑅 ↾ ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2782 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∩ cin 3896 ∅c0 4280 ↾ cres 5616 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 df-v 3438 df-dif 3900 df-in 3904 df-nul 4281 df-opab 5152 df-xp 5620 df-res 5626 |
| This theorem is referenced by: disjresdisj 38283 |
| Copyright terms: Public domain | W3C validator |