| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresin | Structured version Visualization version GIF version | ||
| Description: The restriction to a disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024.) |
| Ref | Expression |
|---|---|
| disjresin | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reseq2 5945 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = (𝑅 ↾ ∅)) | |
| 2 | res0 5954 | . 2 ⊢ (𝑅 ↾ ∅) = ∅ | |
| 3 | 1, 2 | eqtrdi 2780 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∩ cin 3913 ∅c0 4296 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-xp 5644 df-res 5650 |
| This theorem is referenced by: disjresdisj 38229 |
| Copyright terms: Public domain | W3C validator |