Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > disjresin | Structured version Visualization version GIF version |
Description: The restriction to a disjoint is the empty class. (Contributed by Peter Mazsa, 24-Jul-2024.) |
Ref | Expression |
---|---|
disjresin | ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reseq2 5898 | . 2 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = (𝑅 ↾ ∅)) | |
2 | res0 5907 | . 2 ⊢ (𝑅 ↾ ∅) = ∅ | |
3 | 1, 2 | eqtrdi 2792 | 1 ⊢ ((𝐴 ∩ 𝐵) = ∅ → (𝑅 ↾ (𝐴 ∩ 𝐵)) = ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∩ cin 3891 ∅c0 4262 ↾ cres 5602 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pr 5361 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3341 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-opab 5144 df-xp 5606 df-res 5612 |
This theorem is referenced by: disjresdisj 36454 |
Copyright terms: Public domain | W3C validator |