| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelsuc | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| Ref | Expression |
|---|---|
| elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | elsucg 6421 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2108 suc csuc 6354 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-un 3931 df-sn 4602 df-suc 6358 |
| This theorem is referenced by: suctr 6439 pssnn 9180 ttrcltr 9728 ttrclss 9732 ttrclselem2 9738 pwsdompw 10215 fin1a2lem4 10415 grur1a 10831 bnj570 34882 satom 35324 satfv0 35326 satfvsuc 35329 satf00 35342 satf0suc 35344 sat1el2xp 35347 fmla 35349 fmla0 35350 fmlasuc0 35352 satfdmfmla 35368 finxpsuclem 37361 |
| Copyright terms: Public domain | W3C validator |