MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelsuc Structured version   Visualization version   GIF version

Theorem elelsuc 6395
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc (𝐴𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 867 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
2 elsucg 6390 . 2 (𝐴𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2mpbird 257 1 (𝐴𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  suc csuc 6322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-un 3916  df-sn 4586  df-suc 6326
This theorem is referenced by:  suctr  6408  pssnn  9109  ttrcltr  9645  ttrclss  9649  ttrclselem2  9655  pwsdompw  10132  fin1a2lem4  10332  grur1a  10748  bnj570  34868  satom  35316  satfv0  35318  satfvsuc  35321  satf00  35334  satf0suc  35336  sat1el2xp  35339  fmla  35341  fmla0  35342  fmlasuc0  35344  satfdmfmla  35360  finxpsuclem  37358
  Copyright terms: Public domain W3C validator