Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elelsuc | Structured version Visualization version GIF version |
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
Ref | Expression |
---|---|
elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 863 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | elsucg 6318 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | mpbird 256 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 843 = wceq 1539 ∈ wcel 2108 suc csuc 6253 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-un 3888 df-sn 4559 df-suc 6257 |
This theorem is referenced by: suctr 6334 pssnn 8913 pssnnOLD 8969 pwsdompw 9891 fin1a2lem4 10090 grur1a 10506 bnj570 32785 satom 33218 satfv0 33220 satfvsuc 33223 satf00 33236 satf0suc 33238 sat1el2xp 33241 fmla 33243 fmla0 33244 fmlasuc0 33246 satfdmfmla 33262 ttrcltr 33702 ttrclss 33706 ttrclselem2 33712 finxpsuclem 35495 |
Copyright terms: Public domain | W3C validator |