| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelsuc | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| Ref | Expression |
|---|---|
| elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | elsucg 6377 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 suc csuc 6309 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-sn 4578 df-suc 6313 |
| This theorem is referenced by: suctr 6395 pssnn 9082 ttrcltr 9612 ttrclss 9616 ttrclselem2 9622 pwsdompw 10097 fin1a2lem4 10297 grur1a 10713 bnj570 34872 satom 35329 satfv0 35331 satfvsuc 35334 satf00 35347 satf0suc 35349 sat1el2xp 35352 fmla 35354 fmla0 35355 fmlasuc0 35357 satfdmfmla 35373 finxpsuclem 37371 |
| Copyright terms: Public domain | W3C validator |