![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elelsuc | Structured version Visualization version GIF version |
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
Ref | Expression |
---|---|
elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orc 866 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
2 | elsucg 6463 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
3 | 1, 2 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 846 = wceq 1537 ∈ wcel 2108 suc csuc 6397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-un 3981 df-sn 4649 df-suc 6401 |
This theorem is referenced by: suctr 6481 pssnn 9234 ttrcltr 9785 ttrclss 9789 ttrclselem2 9795 pwsdompw 10272 fin1a2lem4 10472 grur1a 10888 bnj570 34881 satom 35324 satfv0 35326 satfvsuc 35329 satf00 35342 satf0suc 35344 sat1el2xp 35347 fmla 35349 fmla0 35350 fmlasuc0 35352 satfdmfmla 35368 finxpsuclem 37363 |
Copyright terms: Public domain | W3C validator |