MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelsuc Structured version   Visualization version   GIF version

Theorem elelsuc 6338
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc (𝐴𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 864 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
2 elsucg 6333 . 2 (𝐴𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2mpbird 256 1 (𝐴𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1539  wcel 2106  suc csuc 6268
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-tru 1542  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-v 3434  df-un 3892  df-sn 4562  df-suc 6272
This theorem is referenced by:  suctr  6349  pssnn  8951  pssnnOLD  9040  ttrcltr  9474  ttrclss  9478  ttrclselem2  9484  pwsdompw  9960  fin1a2lem4  10159  grur1a  10575  bnj570  32885  satom  33318  satfv0  33320  satfvsuc  33323  satf00  33336  satf0suc  33338  sat1el2xp  33341  fmla  33343  fmla0  33344  fmlasuc0  33346  satfdmfmla  33362  finxpsuclem  35568
  Copyright terms: Public domain W3C validator