| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelsuc | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| Ref | Expression |
|---|---|
| elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | elsucg 6427 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 suc csuc 6359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-v 3466 df-un 3936 df-sn 4607 df-suc 6363 |
| This theorem is referenced by: suctr 6445 pssnn 9187 ttrcltr 9735 ttrclss 9739 ttrclselem2 9745 pwsdompw 10222 fin1a2lem4 10422 grur1a 10838 bnj570 34941 satom 35383 satfv0 35385 satfvsuc 35388 satf00 35401 satf0suc 35403 sat1el2xp 35406 fmla 35408 fmla0 35409 fmlasuc0 35411 satfdmfmla 35427 finxpsuclem 37420 |
| Copyright terms: Public domain | W3C validator |