| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elelsuc | Structured version Visualization version GIF version | ||
| Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.) |
| Ref | Expression |
|---|---|
| elelsuc | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orc 867 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵)) | |
| 2 | elsucg 6390 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴 ∈ 𝐵 ∨ 𝐴 = 𝐵))) | |
| 3 | 1, 2 | mpbird 257 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ suc 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 suc csuc 6322 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-suc 6326 |
| This theorem is referenced by: suctr 6408 pssnn 9109 ttrcltr 9645 ttrclss 9649 ttrclselem2 9655 pwsdompw 10132 fin1a2lem4 10332 grur1a 10748 bnj570 34888 satom 35336 satfv0 35338 satfvsuc 35341 satf00 35354 satf0suc 35356 sat1el2xp 35359 fmla 35361 fmla0 35362 fmlasuc0 35364 satfdmfmla 35380 finxpsuclem 37378 |
| Copyright terms: Public domain | W3C validator |