MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelsuc Structured version   Visualization version   GIF version

Theorem elelsuc 6381
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc (𝐴𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 867 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
2 elsucg 6376 . 2 (𝐴𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2mpbird 257 1 (𝐴𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1541  wcel 2111  suc csuc 6308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-v 3438  df-un 3902  df-sn 4574  df-suc 6312
This theorem is referenced by:  suctr  6394  pssnn  9078  ttrcltr  9606  ttrclss  9610  ttrclselem2  9616  pwsdompw  10094  fin1a2lem4  10294  grur1a  10710  bnj570  34917  fineqvnttrclselem3  35143  satom  35400  satfv0  35402  satfvsuc  35405  satf00  35418  satf0suc  35420  sat1el2xp  35423  fmla  35425  fmla0  35426  fmlasuc0  35428  satfdmfmla  35444  finxpsuclem  37441
  Copyright terms: Public domain W3C validator