MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelsuc Structured version   Visualization version   GIF version

Theorem elelsuc 6382
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc (𝐴𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 867 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
2 elsucg 6377 . 2 (𝐴𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2mpbird 257 1 (𝐴𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2109  suc csuc 6309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3438  df-un 3908  df-sn 4578  df-suc 6313
This theorem is referenced by:  suctr  6395  pssnn  9082  ttrcltr  9612  ttrclss  9616  ttrclselem2  9622  pwsdompw  10097  fin1a2lem4  10297  grur1a  10713  bnj570  34872  satom  35329  satfv0  35331  satfvsuc  35334  satf00  35347  satf0suc  35349  sat1el2xp  35352  fmla  35354  fmla0  35355  fmlasuc0  35357  satfdmfmla  35373  finxpsuclem  37371
  Copyright terms: Public domain W3C validator