MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elelsuc Structured version   Visualization version   GIF version

Theorem elelsuc 6426
Description: Membership in a successor. (Contributed by NM, 20-Jun-1998.)
Assertion
Ref Expression
elelsuc (𝐴𝐵𝐴 ∈ suc 𝐵)

Proof of Theorem elelsuc
StepHypRef Expression
1 orc 867 . 2 (𝐴𝐵 → (𝐴𝐵𝐴 = 𝐵))
2 elsucg 6421 . 2 (𝐴𝐵 → (𝐴 ∈ suc 𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
31, 2mpbird 257 1 (𝐴𝐵𝐴 ∈ suc 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 847   = wceq 1540  wcel 2108  suc csuc 6354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-un 3931  df-sn 4602  df-suc 6358
This theorem is referenced by:  suctr  6439  pssnn  9180  ttrcltr  9728  ttrclss  9732  ttrclselem2  9738  pwsdompw  10215  fin1a2lem4  10415  grur1a  10831  bnj570  34882  satom  35324  satfv0  35326  satfvsuc  35329  satf00  35342  satf0suc  35344  sat1el2xp  35347  fmla  35349  fmla0  35350  fmlasuc0  35352  satfdmfmla  35368  finxpsuclem  37361
  Copyright terms: Public domain W3C validator