Proof of Theorem pythagtriplem19
| Step | Hyp | Ref
| Expression |
| 1 | | gcdnncl 16545 |
. . . . 5
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 2 | 1 | 3adant3 1132 |
. . . 4
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 3 | 2 | 3ad2ant1 1133 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐴 gcd 𝐵) ∈ ℕ) |
| 4 | | nnz 12636 |
. . . . . . . . . . 11
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℤ) |
| 5 | | nnz 12636 |
. . . . . . . . . . 11
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℤ) |
| 6 | | gcddvds 16541 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 7 | 4, 5, 6 | syl2an 596 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 8 | 7 | 3adant3 1132 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) |
| 9 | 8 | simpld 494 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐴) |
| 10 | 2 | nnzd 12642 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℤ) |
| 11 | 2 | nnne0d 12317 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ≠ 0) |
| 12 | 4 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℤ) |
| 13 | | dvdsval2 16294 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 14 | 10, 11, 12, 13 | syl3anc 1372 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 15 | 9, 14 | mpbid 232 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ) |
| 16 | | nnre 12274 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℝ) |
| 17 | 16 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℝ) |
| 18 | 2 | nnred 12282 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℝ) |
| 19 | | nngt0 12298 |
. . . . . . . . 9
⊢ (𝐴 ∈ ℕ → 0 <
𝐴) |
| 20 | 19 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐴) |
| 21 | 2 | nngt0d 12316 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐴 gcd 𝐵)) |
| 22 | 17, 18, 20, 21 | divgt0d 12204 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐴 / (𝐴 gcd 𝐵))) |
| 23 | | elnnz 12625 |
. . . . . . 7
⊢ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ↔ ((𝐴 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < (𝐴 / (𝐴 gcd 𝐵)))) |
| 24 | 15, 22, 23 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ) |
| 25 | 24 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ) |
| 26 | 8 | simprd 495 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∥ 𝐵) |
| 27 | 5 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℤ) |
| 28 | | dvdsval2 16294 |
. . . . . . . . 9
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 29 | 10, 11, 27, 28 | syl3anc 1372 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 30 | 26, 29 | mpbid 232 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ) |
| 31 | | nnre 12274 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℝ) |
| 32 | 31 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℝ) |
| 33 | | nngt0 12298 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℕ → 0 <
𝐵) |
| 34 | 33 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐵) |
| 35 | 32, 18, 34, 21 | divgt0d 12204 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐵 / (𝐴 gcd 𝐵))) |
| 36 | | elnnz 12625 |
. . . . . . 7
⊢ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ↔ ((𝐵 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < (𝐵 / (𝐴 gcd 𝐵)))) |
| 37 | 30, 35, 36 | sylanbrc 583 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ) |
| 38 | 37 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ) |
| 39 | | dvdssq 16605 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))) |
| 40 | 10, 12, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐴 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2))) |
| 41 | | dvdssq 16605 |
. . . . . . . . . . . . . . 15
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))) |
| 42 | 10, 27, 41 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐵 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))) |
| 43 | 40, 42 | anbi12d 632 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵) ↔ (((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)))) |
| 44 | 8, 43 | mpbid 232 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2))) |
| 45 | 2 | nnsqcld 14284 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∈ ℕ) |
| 46 | 45 | nnzd 12642 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∈ ℤ) |
| 47 | | nnsqcl 14169 |
. . . . . . . . . . . . . . 15
⊢ (𝐴 ∈ ℕ → (𝐴↑2) ∈
ℕ) |
| 48 | 47 | 3ad2ant1 1133 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℕ) |
| 49 | 48 | nnzd 12642 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℤ) |
| 50 | | nnsqcl 14169 |
. . . . . . . . . . . . . . 15
⊢ (𝐵 ∈ ℕ → (𝐵↑2) ∈
ℕ) |
| 51 | 50 | 3ad2ant2 1134 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℕ) |
| 52 | 51 | nnzd 12642 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℤ) |
| 53 | | dvds2add 16328 |
. . . . . . . . . . . . 13
⊢ ((((𝐴 gcd 𝐵)↑2) ∈ ℤ ∧ (𝐴↑2) ∈ ℤ ∧
(𝐵↑2) ∈ ℤ)
→ ((((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))) |
| 54 | 46, 49, 52, 53 | syl3anc 1372 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) →
((((𝐴 gcd 𝐵)↑2) ∥ (𝐴↑2) ∧ ((𝐴 gcd 𝐵)↑2) ∥ (𝐵↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2)))) |
| 55 | 44, 54 | mpd 15 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2))) |
| 56 | 55 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ ((𝐴↑2) + (𝐵↑2))) |
| 57 | | simpr 484 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) |
| 58 | 56, 57 | breqtrd 5168 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2)) |
| 59 | | nnz 12636 |
. . . . . . . . . . . 12
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℤ) |
| 60 | 59 | 3ad2ant3 1135 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℤ) |
| 61 | | dvdssq 16605 |
. . . . . . . . . . 11
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2))) |
| 62 | 10, 60, 61 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2))) |
| 63 | 62 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ ((𝐴 gcd 𝐵)↑2) ∥ (𝐶↑2))) |
| 64 | 58, 63 | mpbird 257 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐴 gcd 𝐵) ∥ 𝐶) |
| 65 | | dvdsval2 16294 |
. . . . . . . . . 10
⊢ (((𝐴 gcd 𝐵) ∈ ℤ ∧ (𝐴 gcd 𝐵) ≠ 0 ∧ 𝐶 ∈ ℤ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 66 | 10, 11, 60, 65 | syl3anc 1372 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 67 | 66 | adantr 480 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → ((𝐴 gcd 𝐵) ∥ 𝐶 ↔ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ)) |
| 68 | 64, 67 | mpbid 232 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ) |
| 69 | | nnre 12274 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℝ) |
| 70 | 69 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℝ) |
| 71 | | nngt0 12298 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℕ → 0 <
𝐶) |
| 72 | 71 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
𝐶) |
| 73 | 70, 18, 72, 21 | divgt0d 12204 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 0 <
(𝐶 / (𝐴 gcd 𝐵))) |
| 74 | 73 | adantr 480 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → 0 < (𝐶 / (𝐴 gcd 𝐵))) |
| 75 | | elnnz 12625 |
. . . . . . 7
⊢ ((𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ ↔ ((𝐶 / (𝐴 gcd 𝐵)) ∈ ℤ ∧ 0 < (𝐶 / (𝐴 gcd 𝐵)))) |
| 76 | 68, 74, 75 | sylanbrc 583 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2)) → (𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ) |
| 77 | 76 | 3adant3 1132 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ) |
| 78 | 48 | nncnd 12283 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴↑2) ∈
ℂ) |
| 79 | 51 | nncnd 12283 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐵↑2) ∈
ℂ) |
| 80 | 45 | nncnd 12283 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ∈ ℂ) |
| 81 | 45 | nnne0d 12317 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵)↑2) ≠ 0) |
| 82 | 78, 79, 80, 81 | divdird 12082 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2)))) |
| 83 | 82 | 3ad2ant1 1133 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2)))) |
| 84 | | nncn 12275 |
. . . . . . . . . 10
⊢ (𝐶 ∈ ℕ → 𝐶 ∈
ℂ) |
| 85 | 84 | 3ad2ant3 1135 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 ∈
ℂ) |
| 86 | 2 | nncnd 12283 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 gcd 𝐵) ∈ ℂ) |
| 87 | 85, 86, 11 | sqdivd 14200 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐶 / (𝐴 gcd 𝐵))↑2) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2))) |
| 88 | 87 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ((𝐶 / (𝐴 gcd 𝐵))↑2) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2))) |
| 89 | | oveq1 7439 |
. . . . . . . 8
⊢ (((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2))) |
| 90 | 89 | 3ad2ant2 1134 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2)) = ((𝐶↑2) / ((𝐴 gcd 𝐵)↑2))) |
| 91 | 88, 90 | eqtr4d 2779 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ((𝐶 / (𝐴 gcd 𝐵))↑2) = (((𝐴↑2) + (𝐵↑2)) / ((𝐴 gcd 𝐵)↑2))) |
| 92 | | nncn 12275 |
. . . . . . . . . 10
⊢ (𝐴 ∈ ℕ → 𝐴 ∈
ℂ) |
| 93 | 92 | 3ad2ant1 1133 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 ∈
ℂ) |
| 94 | 93, 86, 11 | sqdivd 14200 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵))↑2) = ((𝐴↑2) / ((𝐴 gcd 𝐵)↑2))) |
| 95 | | nncn 12275 |
. . . . . . . . . 10
⊢ (𝐵 ∈ ℕ → 𝐵 ∈
ℂ) |
| 96 | 95 | 3ad2ant2 1134 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 ∈
ℂ) |
| 97 | 96, 86, 11 | sqdivd 14200 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐵 / (𝐴 gcd 𝐵))↑2) = ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2))) |
| 98 | 94, 97 | oveq12d 7450 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2)))) |
| 99 | 98 | 3ad2ant1 1133 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = (((𝐴↑2) / ((𝐴 gcd 𝐵)↑2)) + ((𝐵↑2) / ((𝐴 gcd 𝐵)↑2)))) |
| 100 | 83, 91, 99 | 3eqtr4rd 2787 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = ((𝐶 / (𝐴 gcd 𝐵))↑2)) |
| 101 | | gcddiv 16589 |
. . . . . . . 8
⊢ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ (𝐴 gcd 𝐵) ∈ ℕ) ∧ ((𝐴 gcd 𝐵) ∥ 𝐴 ∧ (𝐴 gcd 𝐵) ∥ 𝐵)) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))) |
| 102 | 12, 27, 2, 8, 101 | syl31anc 1374 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵)))) |
| 103 | 86, 11 | dividd 12042 |
. . . . . . 7
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) / (𝐴 gcd 𝐵)) = 1) |
| 104 | 102, 103 | eqtr3d 2778 |
. . . . . 6
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) |
| 105 | 104 | 3ad2ant1 1133 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1) |
| 106 | | simp3 1138 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) |
| 107 | | pythagtriplem18 16871 |
. . . . 5
⊢ ((((𝐴 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐵 / (𝐴 gcd 𝐵)) ∈ ℕ ∧ (𝐶 / (𝐴 gcd 𝐵)) ∈ ℕ) ∧ (((𝐴 / (𝐴 gcd 𝐵))↑2) + ((𝐵 / (𝐴 gcd 𝐵))↑2)) = ((𝐶 / (𝐴 gcd 𝐵))↑2) ∧ (((𝐴 / (𝐴 gcd 𝐵)) gcd (𝐵 / (𝐴 gcd 𝐵))) = 1 ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵)))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2)))) |
| 108 | 25, 38, 77, 100, 105, 106, 107 | syl312anc 1392 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2)))) |
| 109 | 93, 86, 11 | divcan2d 12046 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) = 𝐴) |
| 110 | 109 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵)))) |
| 111 | 96, 86, 11 | divcan2d 12046 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) = 𝐵) |
| 112 | 111 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵)))) |
| 113 | 85, 86, 11 | divcan2d 12046 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) = 𝐶) |
| 114 | 113 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵)))) |
| 115 | 110, 112,
114 | 3jca 1128 |
. . . . . . . 8
⊢ ((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))))) |
| 116 | 115 | 3ad2ant1 1133 |
. . . . . . 7
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))))) |
| 117 | | oveq2 7440 |
. . . . . . . . . 10
⊢ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) → ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2)))) |
| 118 | 117 | eqeq2d 2747 |
. . . . . . . . 9
⊢ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ↔ 𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))))) |
| 119 | 118 | 3ad2ant1 1133 |
. . . . . . . 8
⊢ (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ↔ 𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))))) |
| 120 | | oveq2 7440 |
. . . . . . . . . 10
⊢ ((𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) → ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛)))) |
| 121 | 120 | eqeq2d 2747 |
. . . . . . . . 9
⊢ ((𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) → (𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ↔ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))))) |
| 122 | 121 | 3ad2ant2 1134 |
. . . . . . . 8
⊢ (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ↔ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))))) |
| 123 | | oveq2 7440 |
. . . . . . . . . 10
⊢ ((𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2)) → ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))) |
| 124 | 123 | eqeq2d 2747 |
. . . . . . . . 9
⊢ ((𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2)) → (𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) ↔ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))) |
| 125 | 124 | 3ad2ant3 1135 |
. . . . . . . 8
⊢ (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵))) ↔ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))) |
| 126 | 119, 122,
125 | 3anbi123d 1437 |
. . . . . . 7
⊢ (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → ((𝐴 = ((𝐴 gcd 𝐵) · (𝐴 / (𝐴 gcd 𝐵))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (𝐵 / (𝐴 gcd 𝐵))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · (𝐶 / (𝐴 gcd 𝐵)))) ↔ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))) |
| 127 | 116, 126 | syl5ibcom 245 |
. . . . . 6
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))) |
| 128 | 127 | reximdv 3169 |
. . . . 5
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))) |
| 129 | 128 | reximdv 3169 |
. . . 4
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ((𝐴 / (𝐴 gcd 𝐵)) = ((𝑚↑2) − (𝑛↑2)) ∧ (𝐵 / (𝐴 gcd 𝐵)) = (2 · (𝑚 · 𝑛)) ∧ (𝐶 / (𝐴 gcd 𝐵)) = ((𝑚↑2) + (𝑛↑2))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))) |
| 130 | 108, 129 | mpd 15 |
. . 3
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))) |
| 131 | | oveq1 7439 |
. . . . . . 7
⊢ (𝑘 = (𝐴 gcd 𝐵) → (𝑘 · ((𝑚↑2) − (𝑛↑2))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2)))) |
| 132 | 131 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑘 = (𝐴 gcd 𝐵) → (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ↔ 𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))))) |
| 133 | | oveq1 7439 |
. . . . . . 7
⊢ (𝑘 = (𝐴 gcd 𝐵) → (𝑘 · (2 · (𝑚 · 𝑛))) = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛)))) |
| 134 | 133 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑘 = (𝐴 gcd 𝐵) → (𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ↔ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))))) |
| 135 | | oveq1 7439 |
. . . . . . 7
⊢ (𝑘 = (𝐴 gcd 𝐵) → (𝑘 · ((𝑚↑2) + (𝑛↑2))) = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))) |
| 136 | 135 | eqeq2d 2747 |
. . . . . 6
⊢ (𝑘 = (𝐴 gcd 𝐵) → (𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))) ↔ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))) |
| 137 | 132, 134,
136 | 3anbi123d 1437 |
. . . . 5
⊢ (𝑘 = (𝐴 gcd 𝐵) → ((𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))) |
| 138 | 137 | 2rexbidv 3221 |
. . . 4
⊢ (𝑘 = (𝐴 gcd 𝐵) → (∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2)))))) |
| 139 | 138 | rspcev 3621 |
. . 3
⊢ (((𝐴 gcd 𝐵) ∈ ℕ ∧ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = ((𝐴 gcd 𝐵) · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = ((𝐴 gcd 𝐵) · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = ((𝐴 gcd 𝐵) · ((𝑚↑2) + (𝑛↑2))))) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| 140 | 3, 130, 139 | syl2anc 584 |
. 2
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑘 ∈ ℕ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| 141 | | rexcom 3289 |
. . 3
⊢
(∃𝑘 ∈
ℕ ∃𝑛 ∈
ℕ ∃𝑚 ∈
ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑘 ∈ ℕ ∃𝑚 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| 142 | | rexcom 3289 |
. . . 4
⊢
(∃𝑘 ∈
ℕ ∃𝑚 ∈
ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| 143 | 142 | rexbii 3093 |
. . 3
⊢
(∃𝑛 ∈
ℕ ∃𝑘 ∈
ℕ ∃𝑚 ∈
ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| 144 | 141, 143 | bitri 275 |
. 2
⊢
(∃𝑘 ∈
ℕ ∃𝑛 ∈
ℕ ∃𝑚 ∈
ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2)))) ↔ ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |
| 145 | 140, 144 | sylib 218 |
1
⊢ (((𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ ((𝐴↑2) + (𝐵↑2)) = (𝐶↑2) ∧ ¬ 2 ∥ (𝐴 / (𝐴 gcd 𝐵))) → ∃𝑛 ∈ ℕ ∃𝑚 ∈ ℕ ∃𝑘 ∈ ℕ (𝐴 = (𝑘 · ((𝑚↑2) − (𝑛↑2))) ∧ 𝐵 = (𝑘 · (2 · (𝑚 · 𝑛))) ∧ 𝐶 = (𝑘 · ((𝑚↑2) + (𝑛↑2))))) |