Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg16ALTN Structured version   Visualization version   GIF version

Theorem cdlemg16ALTN 40641
Description: This version of cdlemg16 40640 uses cdlemg15a 40638 instead of cdlemg15 40639, in case cdlemg15 40639 ends up not being needed. TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg16ALTN (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Proof of Theorem cdlemg16ALTN
StepHypRef Expression
1 simpl11 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ HL)
2 simpl12 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝑊𝐻)
31, 2jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simpl21 1250 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simpl22 1251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simpl13 1249 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝐹𝑇𝐺𝑇))
7 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
8 simpl31 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
9 cdlemg12.l . . . 4 = (le‘𝐾)
10 cdlemg12.j . . . 4 = (join‘𝐾)
11 cdlemg12.m . . . 4 = (meet‘𝐾)
12 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
13 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
14 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemg12b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
169, 10, 11, 12, 13, 14, 15cdlemg15a 40638 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) = (𝑅𝐺) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
173, 4, 5, 6, 7, 8, 16syl312anc 1390 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
18 simpl11 1247 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐾 ∈ HL)
19 simpl12 1248 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝑊𝐻)
2018, 19jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpl21 1250 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simpl22 1251 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
23 simp13l 1287 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐹𝑇)
2423adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐹𝑇)
25 simp13r 1288 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐺𝑇)
2625adantr 480 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐺𝑇)
27 simpl23 1252 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝑃𝑄)
28 simpl32 1254 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ¬ (𝑅𝐹) (𝑃 𝑄))
29 simpl33 1255 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ¬ (𝑅𝐺) (𝑃 𝑄))
3028, 29jca 511 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)))
31 simpr 484 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅𝐹) ≠ (𝑅𝐺))
32 simpl31 1253 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
339, 10, 11, 12, 13, 14, 15cdlemg12 40633 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
3420, 21, 22, 24, 26, 27, 30, 31, 32, 33syl333anc 1401 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
3517, 34pm2.61dane 3027 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938   class class class wbr 5148  cfv 6563  (class class class)co 7431  lecple 17305  joincjn 18369  meetcmee 18370  Atomscatm 39245  HLchlt 39332  LHypclh 39967  LTrncltrn 40084  trLctrl 40141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-riotaBAD 38935
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-undef 8297  df-map 8867  df-proset 18352  df-poset 18371  df-plt 18388  df-lub 18404  df-glb 18405  df-join 18406  df-meet 18407  df-p0 18483  df-p1 18484  df-lat 18490  df-clat 18557  df-oposet 39158  df-ol 39160  df-oml 39161  df-covers 39248  df-ats 39249  df-atl 39280  df-cvlat 39304  df-hlat 39333  df-llines 39481  df-lplanes 39482  df-lvols 39483  df-lines 39484  df-psubsp 39486  df-pmap 39487  df-padd 39779  df-lhyp 39971  df-laut 39972  df-ldil 40087  df-ltrn 40088  df-trl 40142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator