Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg16ALTN Structured version   Visualization version   GIF version

Theorem cdlemg16ALTN 39524
Description: This version of cdlemg16 39523 uses cdlemg15a 39521 instead of cdlemg15 39522, in case cdlemg15 39522 ends up not being needed. TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l ≀ = (leβ€˜πΎ)
cdlemg12.j ∨ = (joinβ€˜πΎ)
cdlemg12.m ∧ = (meetβ€˜πΎ)
cdlemg12.a 𝐴 = (Atomsβ€˜πΎ)
cdlemg12.h 𝐻 = (LHypβ€˜πΎ)
cdlemg12.t 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
cdlemg12b.r 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
Assertion
Ref Expression
cdlemg16ALTN (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))

Proof of Theorem cdlemg16ALTN
StepHypRef Expression
1 simpl11 1248 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ 𝐾 ∈ HL)
2 simpl12 1249 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ π‘Š ∈ 𝐻)
31, 2jca 512 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
4 simpl21 1251 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
5 simpl22 1252 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
6 simpl13 1250 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇))
7 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ (π‘…β€˜πΉ) = (π‘…β€˜πΊ))
8 simpl31 1254 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄))
9 cdlemg12.l . . . 4 ≀ = (leβ€˜πΎ)
10 cdlemg12.j . . . 4 ∨ = (joinβ€˜πΎ)
11 cdlemg12.m . . . 4 ∧ = (meetβ€˜πΎ)
12 cdlemg12.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
13 cdlemg12.h . . . 4 𝐻 = (LHypβ€˜πΎ)
14 cdlemg12.t . . . 4 𝑇 = ((LTrnβ€˜πΎ)β€˜π‘Š)
15 cdlemg12b.r . . . 4 𝑅 = ((trLβ€˜πΎ)β€˜π‘Š)
169, 10, 11, 12, 13, 14, 15cdlemg15a 39521 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇) ∧ ((π‘…β€˜πΉ) = (π‘…β€˜πΊ) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
173, 4, 5, 6, 7, 8, 16syl312anc 1391 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) = (π‘…β€˜πΊ)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
18 simpl11 1248 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ 𝐾 ∈ HL)
19 simpl12 1249 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ π‘Š ∈ 𝐻)
2018, 19jca 512 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
21 simpl21 1251 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
22 simpl22 1252 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
23 simp13l 1288 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝐹 ∈ 𝑇)
2423adantr 481 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ 𝐹 ∈ 𝑇)
25 simp13r 1289 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ 𝐺 ∈ 𝑇)
2625adantr 481 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ 𝐺 ∈ 𝑇)
27 simpl23 1253 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ 𝑃 β‰  𝑄)
28 simpl32 1255 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄))
29 simpl33 1256 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))
3028, 29jca 512 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄)))
31 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ))
32 simpl31 1254 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄))
339, 10, 11, 12, 13, 14, 15cdlemg12 39516 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇 ∧ 𝑃 β‰  𝑄) ∧ ((Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄)) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ) ∧ ((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
3420, 21, 22, 24, 26, 27, 30, 31, 32, 33syl333anc 1402 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) ∧ (π‘…β€˜πΉ) β‰  (π‘…β€˜πΊ)) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
3517, 34pm2.61dane 3029 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻 ∧ (𝐹 ∈ 𝑇 ∧ 𝐺 ∈ 𝑇)) ∧ ((𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š) ∧ 𝑃 β‰  𝑄) ∧ (((πΉβ€˜(πΊβ€˜π‘ƒ)) ∨ (πΉβ€˜(πΊβ€˜π‘„))) β‰  (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΉ) ≀ (𝑃 ∨ 𝑄) ∧ Β¬ (π‘…β€˜πΊ) ≀ (𝑃 ∨ 𝑄))) β†’ ((𝑃 ∨ (πΉβ€˜(πΊβ€˜π‘ƒ))) ∧ π‘Š) = ((𝑄 ∨ (πΉβ€˜(πΊβ€˜π‘„))) ∧ π‘Š))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  lecple 17203  joincjn 18263  meetcmee 18264  Atomscatm 38128  HLchlt 38215  LHypclh 38850  LTrncltrn 38967  trLctrl 39024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-riotaBAD 37818
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-undef 8257  df-map 8821  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-p1 18378  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-llines 38364  df-lplanes 38365  df-lvols 38366  df-lines 38367  df-psubsp 38369  df-pmap 38370  df-padd 38662  df-lhyp 38854  df-laut 38855  df-ldil 38970  df-ltrn 38971  df-trl 39025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator