Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg16ALTN Structured version   Visualization version   GIF version

Theorem cdlemg16ALTN 37661
Description: This version of cdlemg16 37660 uses cdlemg15a 37658 instead of cdlemg15 37659, in case cdlemg15 37659 ends up not being needed. TODO: FIX COMMENT. (Contributed by NM, 6-May-2013.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg16ALTN (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))

Proof of Theorem cdlemg16ALTN
StepHypRef Expression
1 simpl11 1242 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝐾 ∈ HL)
2 simpl12 1243 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → 𝑊𝐻)
31, 2jca 512 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
4 simpl21 1245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
5 simpl22 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
6 simpl13 1244 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝐹𝑇𝐺𝑇))
7 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → (𝑅𝐹) = (𝑅𝐺))
8 simpl31 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
9 cdlemg12.l . . . 4 = (le‘𝐾)
10 cdlemg12.j . . . 4 = (join‘𝐾)
11 cdlemg12.m . . . 4 = (meet‘𝐾)
12 cdlemg12.a . . . 4 𝐴 = (Atoms‘𝐾)
13 cdlemg12.h . . . 4 𝐻 = (LHyp‘𝐾)
14 cdlemg12.t . . . 4 𝑇 = ((LTrn‘𝐾)‘𝑊)
15 cdlemg12b.r . . . 4 𝑅 = ((trL‘𝐾)‘𝑊)
169, 10, 11, 12, 13, 14, 15cdlemg15a 37658 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇) ∧ ((𝑅𝐹) = (𝑅𝐺) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
173, 4, 5, 6, 7, 8, 16syl312anc 1385 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) = (𝑅𝐺)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
18 simpl11 1242 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐾 ∈ HL)
19 simpl12 1243 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝑊𝐻)
2018, 19jca 512 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 simpl21 1245 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
22 simpl22 1246 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑄𝐴 ∧ ¬ 𝑄 𝑊))
23 simp13l 1282 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐹𝑇)
2423adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐹𝑇)
25 simp13r 1283 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → 𝐺𝑇)
2625adantr 481 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝐺𝑇)
27 simpl23 1247 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → 𝑃𝑄)
28 simpl32 1249 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ¬ (𝑅𝐹) (𝑃 𝑄))
29 simpl33 1250 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ¬ (𝑅𝐺) (𝑃 𝑄))
3028, 29jca 512 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)))
31 simpr 485 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → (𝑅𝐹) ≠ (𝑅𝐺))
32 simpl31 1248 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))
339, 10, 11, 12, 13, 14, 15cdlemg12 37653 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝐹𝑇𝐺𝑇𝑃𝑄) ∧ ((¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄)) ∧ (𝑅𝐹) ≠ (𝑅𝐺) ∧ ((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
3420, 21, 22, 24, 26, 27, 30, 31, 32, 33syl333anc 1396 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) ∧ (𝑅𝐹) ≠ (𝑅𝐺)) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
3517, 34pm2.61dane 3109 1 (((𝐾 ∈ HL ∧ 𝑊𝐻 ∧ (𝐹𝑇𝐺𝑇)) ∧ ((𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊) ∧ 𝑃𝑄) ∧ (((𝐹‘(𝐺𝑃)) (𝐹‘(𝐺𝑄))) ≠ (𝑃 𝑄) ∧ ¬ (𝑅𝐹) (𝑃 𝑄) ∧ ¬ (𝑅𝐺) (𝑃 𝑄))) → ((𝑃 (𝐹‘(𝐺𝑃))) 𝑊) = ((𝑄 (𝐹‘(𝐺𝑄))) 𝑊))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107  wne 3021   class class class wbr 5063  cfv 6352  (class class class)co 7148  lecple 16562  joincjn 17544  meetcmee 17545  Atomscatm 36266  HLchlt 36353  LHypclh 36987  LTrncltrn 37104  trLctrl 37161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-13 2385  ax-ext 2798  ax-rep 5187  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7451  ax-riotaBAD 35956
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-ral 3148  df-rex 3149  df-reu 3150  df-rmo 3151  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4838  df-iun 4919  df-iin 4920  df-br 5064  df-opab 5126  df-mpt 5144  df-id 5459  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-iota 6312  df-fun 6354  df-fn 6355  df-f 6356  df-f1 6357  df-fo 6358  df-f1o 6359  df-fv 6360  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-1st 7680  df-2nd 7681  df-undef 7930  df-map 8398  df-proset 17528  df-poset 17546  df-plt 17558  df-lub 17574  df-glb 17575  df-join 17576  df-meet 17577  df-p0 17639  df-p1 17640  df-lat 17646  df-clat 17708  df-oposet 36179  df-ol 36181  df-oml 36182  df-covers 36269  df-ats 36270  df-atl 36301  df-cvlat 36325  df-hlat 36354  df-llines 36501  df-lplanes 36502  df-lvols 36503  df-lines 36504  df-psubsp 36506  df-pmap 36507  df-padd 36799  df-lhyp 36991  df-laut 36992  df-ldil 37107  df-ltrn 37108  df-trl 37162
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator