Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5e Structured version   Visualization version   GIF version

Theorem flt4lem5e 42052
Description: Satisfy the hypotheses of flt4lem4 42045. (Contributed by SN, 23-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5e (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))

Proof of Theorem flt4lem5e
StepHypRef Expression
1 flt4lem5a.a . . . 4 (𝜑𝐴 ∈ ℕ)
21nnsqcld 14232 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℕ)
3 flt4lem5a.b . . . . . . 7 (𝜑𝐵 ∈ ℕ)
43nnsqcld 14232 . . . . . 6 (𝜑 → (𝐵↑2) ∈ ℕ)
5 flt4lem5a.c . . . . . 6 (𝜑𝐶 ∈ ℕ)
6 flt4lem5a.1 . . . . . . 7 (𝜑 → ¬ 2 ∥ 𝐴)
7 2prm 16656 . . . . . . . 8 2 ∈ ℙ
81nnzd 12609 . . . . . . . 8 (𝜑𝐴 ∈ ℤ)
9 prmdvdssq 16682 . . . . . . . 8 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
107, 8, 9sylancr 586 . . . . . . 7 (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
116, 10mtbid 324 . . . . . 6 (𝜑 → ¬ 2 ∥ (𝐴↑2))
12 flt4lem5a.2 . . . . . . 7 (𝜑 → (𝐴 gcd 𝐶) = 1)
13 2nn 12309 . . . . . . . . 9 2 ∈ ℕ
1413a1i 11 . . . . . . . 8 (𝜑 → 2 ∈ ℕ)
15 rplpwr 16526 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
161, 5, 14, 15syl3anc 1369 . . . . . . 7 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
1712, 16mpd 15 . . . . . 6 (𝜑 → ((𝐴↑2) gcd 𝐶) = 1)
181nncnd 12252 . . . . . . . . 9 (𝜑𝐴 ∈ ℂ)
1918flt4lem 42041 . . . . . . . 8 (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2))
203nncnd 12252 . . . . . . . . 9 (𝜑𝐵 ∈ ℂ)
2120flt4lem 42041 . . . . . . . 8 (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2))
2219, 21oveq12d 7432 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2)))
23 flt4lem5a.3 . . . . . . 7 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
2422, 23eqtr3d 2769 . . . . . 6 (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2))
252, 4, 5, 11, 17, 24flt4lem1 42042 . . . . 5 (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))))
26 flt4lem5a.n . . . . . 6 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
2726pythagtriplem13 16789 . . . . 5 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ)
2825, 27syl 17 . . . 4 (𝜑𝑁 ∈ ℕ)
29 flt4lem5a.m . . . . . 6 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
3029pythagtriplem11 16787 . . . . 5 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ)
3125, 30syl 17 . . . 4 (𝜑𝑀 ∈ ℕ)
32 flt4lem5a.r . . . . 5 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
33 flt4lem5a.s . . . . 5 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
3429, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5a 42048 . . . 4 (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2))
3528nnzd 12609 . . . . . 6 (𝜑𝑁 ∈ ℤ)
368, 35gcdcomd 16482 . . . . 5 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
3731nnzd 12609 . . . . . . . 8 (𝜑𝑀 ∈ ℤ)
3835, 37gcdcomd 16482 . . . . . . 7 (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
3929, 26flt4lem5 42046 . . . . . . . 8 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1)
4025, 39syl 17 . . . . . . 7 (𝜑 → (𝑀 gcd 𝑁) = 1)
4138, 40eqtrd 2767 . . . . . 6 (𝜑 → (𝑁 gcd 𝑀) = 1)
4228nnsqcld 14232 . . . . . . . . 9 (𝜑 → (𝑁↑2) ∈ ℕ)
4342nncnd 12252 . . . . . . . 8 (𝜑 → (𝑁↑2) ∈ ℂ)
442nncnd 12252 . . . . . . . 8 (𝜑 → (𝐴↑2) ∈ ℂ)
4543, 44addcomd 11440 . . . . . . 7 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2)))
4645, 34eqtrd 2767 . . . . . 6 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2))
4728, 1, 31, 41, 46fltabcoprm 42038 . . . . 5 (𝜑 → (𝑁 gcd 𝐴) = 1)
4836, 47eqtrd 2767 . . . 4 (𝜑 → (𝐴 gcd 𝑁) = 1)
4932, 33flt4lem5 42046 . . . 4 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → (𝑅 gcd 𝑆) = 1)
501, 28, 31, 34, 48, 6, 49syl312anc 1389 . . 3 (𝜑 → (𝑅 gcd 𝑆) = 1)
5132pythagtriplem11 16787 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑅 ∈ ℕ)
521, 28, 31, 34, 48, 6, 51syl312anc 1389 . . . 4 (𝜑𝑅 ∈ ℕ)
5333pythagtriplem13 16789 . . . . 5 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑆 ∈ ℕ)
541, 28, 31, 34, 48, 6, 53syl312anc 1389 . . . 4 (𝜑𝑆 ∈ ℕ)
5529, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5d 42051 . . . 4 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
5631, 52, 54, 55, 50flt4lem5elem 42047 . . 3 (𝜑 → ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
57 3anass 1093 . . 3 (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ↔ ((𝑅 gcd 𝑆) = 1 ∧ ((𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1)))
5850, 56, 57sylanbrc 582 . 2 (𝜑 → ((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1))
5952, 54, 313jca 1126 . 2 (𝜑 → (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ))
60 sq2 14186 . . . . . . 7 (2↑2) = 4
61 4cn 12321 . . . . . . 7 4 ∈ ℂ
6260, 61eqeltri 2824 . . . . . 6 (2↑2) ∈ ℂ
6362a1i 11 . . . . 5 (𝜑 → (2↑2) ∈ ℂ)
6452, 54nnmulcld 12289 . . . . . . 7 (𝜑 → (𝑅 · 𝑆) ∈ ℕ)
6531, 64nnmulcld 12289 . . . . . 6 (𝜑 → (𝑀 · (𝑅 · 𝑆)) ∈ ℕ)
6665nncnd 12252 . . . . 5 (𝜑 → (𝑀 · (𝑅 · 𝑆)) ∈ ℂ)
67 4ne0 12344 . . . . . . 7 4 ≠ 0
6860, 67eqnetri 3006 . . . . . 6 (2↑2) ≠ 0
6968a1i 11 . . . . 5 (𝜑 → (2↑2) ≠ 0)
70 2cn 12311 . . . . . . . 8 2 ∈ ℂ
7170sqvali 14169 . . . . . . 7 (2↑2) = (2 · 2)
7271oveq1i 7424 . . . . . 6 ((2↑2) · (𝑀 · (𝑅 · 𝑆))) = ((2 · 2) · (𝑀 · (𝑅 · 𝑆)))
73 2cnd 12314 . . . . . . . 8 (𝜑 → 2 ∈ ℂ)
7431nncnd 12252 . . . . . . . 8 (𝜑𝑀 ∈ ℂ)
7564nncnd 12252 . . . . . . . 8 (𝜑 → (𝑅 · 𝑆) ∈ ℂ)
7673, 73, 74, 75mul4d 11450 . . . . . . 7 (𝜑 → ((2 · 2) · (𝑀 · (𝑅 · 𝑆))) = ((2 · 𝑀) · (2 · (𝑅 · 𝑆))))
7729, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5c 42050 . . . . . . . . . . 11 (𝜑𝑁 = (2 · (𝑅 · 𝑆)))
7877, 28eqeltrrd 2829 . . . . . . . . . 10 (𝜑 → (2 · (𝑅 · 𝑆)) ∈ ℕ)
7978nncnd 12252 . . . . . . . . 9 (𝜑 → (2 · (𝑅 · 𝑆)) ∈ ℂ)
8073, 74, 79mulassd 11261 . . . . . . . 8 (𝜑 → ((2 · 𝑀) · (2 · (𝑅 · 𝑆))) = (2 · (𝑀 · (2 · (𝑅 · 𝑆)))))
8177eqcomd 2733 . . . . . . . . . 10 (𝜑 → (2 · (𝑅 · 𝑆)) = 𝑁)
8281oveq2d 7430 . . . . . . . . 9 (𝜑 → (𝑀 · (2 · (𝑅 · 𝑆))) = (𝑀 · 𝑁))
8382oveq2d 7430 . . . . . . . 8 (𝜑 → (2 · (𝑀 · (2 · (𝑅 · 𝑆)))) = (2 · (𝑀 · 𝑁)))
8480, 83eqtrd 2767 . . . . . . 7 (𝜑 → ((2 · 𝑀) · (2 · (𝑅 · 𝑆))) = (2 · (𝑀 · 𝑁)))
8529, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5b 42049 . . . . . . 7 (𝜑 → (2 · (𝑀 · 𝑁)) = (𝐵↑2))
8676, 84, 853eqtrd 2771 . . . . . 6 (𝜑 → ((2 · 2) · (𝑀 · (𝑅 · 𝑆))) = (𝐵↑2))
8772, 86eqtrid 2779 . . . . 5 (𝜑 → ((2↑2) · (𝑀 · (𝑅 · 𝑆))) = (𝐵↑2))
8863, 66, 69, 87mvllmuld 12070 . . . 4 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵↑2) / (2↑2)))
89 2ne0 12340 . . . . . 6 2 ≠ 0
9089a1i 11 . . . . 5 (𝜑 → 2 ≠ 0)
9120, 73, 90sqdivd 14149 . . . 4 (𝜑 → ((𝐵 / 2)↑2) = ((𝐵↑2) / (2↑2)))
9288, 91eqtr4d 2770 . . 3 (𝜑 → (𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2))
9365nnzd 12609 . . . . 5 (𝜑 → (𝑀 · (𝑅 · 𝑆)) ∈ ℤ)
9492, 93eqeltrrd 2829 . . . 4 (𝜑 → ((𝐵 / 2)↑2) ∈ ℤ)
953nnzd 12609 . . . . 5 (𝜑𝐵 ∈ ℤ)
96 znq 12960 . . . . 5 ((𝐵 ∈ ℤ ∧ 2 ∈ ℕ) → (𝐵 / 2) ∈ ℚ)
9795, 13, 96sylancl 585 . . . 4 (𝜑 → (𝐵 / 2) ∈ ℚ)
983nngt0d 12285 . . . . 5 (𝜑 → 0 < 𝐵)
993nnred 12251 . . . . . 6 (𝜑𝐵 ∈ ℝ)
100 halfpos2 12465 . . . . . 6 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ 0 < (𝐵 / 2)))
10199, 100syl 17 . . . . 5 (𝜑 → (0 < 𝐵 ↔ 0 < (𝐵 / 2)))
10298, 101mpbid 231 . . . 4 (𝜑 → 0 < (𝐵 / 2))
10394, 97, 102posqsqznn 41875 . . 3 (𝜑 → (𝐵 / 2) ∈ ℕ)
10492, 103jca 511 . 2 (𝜑 → ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ))
10558, 59, 1043jca 1126 1 (𝜑 → (((𝑅 gcd 𝑆) = 1 ∧ (𝑅 gcd 𝑀) = 1 ∧ (𝑆 gcd 𝑀) = 1) ∧ (𝑅 ∈ ℕ ∧ 𝑆 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝑀 · (𝑅 · 𝑆)) = ((𝐵 / 2)↑2) ∧ (𝐵 / 2) ∈ ℕ)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2935   class class class wbr 5142  cfv 6542  (class class class)co 7414  cc 11130  cr 11131  0cc0 11132  1c1 11133   + caddc 11135   · cmul 11137   < clt 11272  cmin 11468   / cdiv 11895  cn 12236  2c2 12291  4c4 12293  cz 12582  cq 12956  cexp 14052  csqrt 15206  cdvds 16224   gcd cgcd 16462  cprime 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-cnex 11188  ax-resscn 11189  ax-1cn 11190  ax-icn 11191  ax-addcl 11192  ax-addrcl 11193  ax-mulcl 11194  ax-mulrcl 11195  ax-mulcom 11196  ax-addass 11197  ax-mulass 11198  ax-distr 11199  ax-i2m1 11200  ax-1ne0 11201  ax-1rid 11202  ax-rnegex 11203  ax-rrecex 11204  ax-cnre 11205  ax-pre-lttri 11206  ax-pre-lttrn 11207  ax-pre-ltadd 11208  ax-pre-mulgt0 11209  ax-pre-sup 11210
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-nel 3042  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8718  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-sup 9459  df-inf 9460  df-pnf 11274  df-mnf 11275  df-xr 11276  df-ltxr 11277  df-le 11278  df-sub 11470  df-neg 11471  df-div 11896  df-nn 12237  df-2 12299  df-3 12300  df-4 12301  df-n0 12497  df-z 12583  df-uz 12847  df-q 12957  df-rp 13001  df-fz 13511  df-fl 13783  df-mod 13861  df-seq 13993  df-exp 14053  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16225  df-gcd 16463  df-prm 16636  df-numer 16700  df-denom 16701
This theorem is referenced by:  flt4lem5f  42053  flt4lem7  42055
  Copyright terms: Public domain W3C validator