Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemefs27cl Structured version   Visualization version   GIF version

Theorem cdlemefs27cl 39938
Description: Part of proof of Lemma E in [Crawley] p. 113. Closure of 𝑁. TODO FIX COMMENT This is the start of a re-proof of cdleme27cl 39891 etc. with the 𝑠 ≀ (𝑃 ∨ 𝑄) condition (so as to not have the 𝐢 hypothesis). (Contributed by NM, 24-Mar-2013.)
Hypotheses
Ref Expression
cdlemefs26.b 𝐡 = (Baseβ€˜πΎ)
cdlemefs26.l ≀ = (leβ€˜πΎ)
cdlemefs26.j ∨ = (joinβ€˜πΎ)
cdlemefs26.m ∧ = (meetβ€˜πΎ)
cdlemefs26.a 𝐴 = (Atomsβ€˜πΎ)
cdlemefs26.h 𝐻 = (LHypβ€˜πΎ)
cdlemefs27.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdlemefs27.d 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
cdlemefs27.e 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
cdlemefs27.i 𝐼 = (℩𝑒 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝐸))
cdlemefs27.n 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
Assertion
Ref Expression
cdlemefs27cl ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 ∈ 𝐡)
Distinct variable groups:   𝑒,𝑑,𝐴   𝑑,𝐡,𝑒   𝑒,𝐸   𝑑,𝐻   𝑑, ∨ ,𝑒   𝑑,𝐾   𝑑, ≀ ,𝑒   𝑑, ∧ ,𝑒   𝑑,𝑃,𝑒   𝑑,𝑄,𝑒   𝑑,π‘ˆ,𝑒   𝑑,π‘Š,𝑒   𝑑,𝑠,𝑒
Allowed substitution hints:   𝐴(𝑠)   𝐡(𝑠)   𝐢(𝑒,𝑑,𝑠)   𝐷(𝑒,𝑑,𝑠)   𝑃(𝑠)   𝑄(𝑠)   π‘ˆ(𝑠)   𝐸(𝑑,𝑠)   𝐻(𝑒,𝑠)   𝐼(𝑒,𝑑,𝑠)   ∨ (𝑠)   𝐾(𝑒,𝑠)   ≀ (𝑠)   ∧ (𝑠)   𝑁(𝑒,𝑑,𝑠)   π‘Š(𝑠)

Proof of Theorem cdlemefs27cl
StepHypRef Expression
1 cdlemefs27.n . 2 𝑁 = if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢)
2 simpr2 1192 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑠 ≀ (𝑃 ∨ 𝑄))
32iftrued 4533 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢) = 𝐼)
4 simpl1 1188 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
5 simpl2 1189 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š))
6 simpl3 1190 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š))
7 simpr1 1191 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š))
8 simpr3 1193 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑃 β‰  𝑄)
9 cdlemefs26.b . . . . 5 𝐡 = (Baseβ€˜πΎ)
10 cdlemefs26.l . . . . 5 ≀ = (leβ€˜πΎ)
11 cdlemefs26.j . . . . 5 ∨ = (joinβ€˜πΎ)
12 cdlemefs26.m . . . . 5 ∧ = (meetβ€˜πΎ)
13 cdlemefs26.a . . . . 5 𝐴 = (Atomsβ€˜πΎ)
14 cdlemefs26.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
15 cdlemefs27.u . . . . 5 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
16 cdlemefs27.d . . . . 5 𝐷 = ((𝑑 ∨ π‘ˆ) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑑) ∧ π‘Š)))
17 cdlemefs27.e . . . . 5 𝐸 = ((𝑃 ∨ 𝑄) ∧ (𝐷 ∨ ((𝑠 ∨ 𝑑) ∧ π‘Š)))
18 cdlemefs27.i . . . . 5 𝐼 = (℩𝑒 ∈ 𝐡 βˆ€π‘‘ ∈ 𝐴 ((Β¬ 𝑑 ≀ π‘Š ∧ Β¬ 𝑑 ≀ (𝑃 ∨ 𝑄)) β†’ 𝑒 = 𝐸))
199, 10, 11, 12, 13, 14, 15, 16, 17, 18cdleme25cl 39882 . . . 4 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ (𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ (𝑃 β‰  𝑄 ∧ 𝑠 ≀ (𝑃 ∨ 𝑄))) β†’ 𝐼 ∈ 𝐡)
204, 5, 6, 7, 8, 2, 19syl312anc 1388 . . 3 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝐼 ∈ 𝐡)
213, 20eqeltrd 2825 . 2 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ if(𝑠 ≀ (𝑃 ∨ 𝑄), 𝐼, 𝐢) ∈ 𝐡)
221, 21eqeltrid 2829 1 ((((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ Β¬ 𝑃 ≀ π‘Š) ∧ (𝑄 ∈ 𝐴 ∧ Β¬ 𝑄 ≀ π‘Š)) ∧ ((𝑠 ∈ 𝐴 ∧ Β¬ 𝑠 ≀ π‘Š) ∧ 𝑠 ≀ (𝑃 ∨ 𝑄) ∧ 𝑃 β‰  𝑄)) β†’ 𝑁 ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098   β‰  wne 2930  βˆ€wral 3051  ifcif 4525   class class class wbr 5144  β€˜cfv 6543  β„©crio 7368  (class class class)co 7413  Basecbs 17174  lecple 17234  joincjn 18297  meetcmee 18298  Atomscatm 38787  HLchlt 38874  LHypclh 39509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7735
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-nul 4320  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4905  df-iun 4994  df-iin 4995  df-br 5145  df-opab 5207  df-mpt 5228  df-id 5571  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7987  df-2nd 7988  df-proset 18281  df-poset 18299  df-plt 18316  df-lub 18332  df-glb 18333  df-join 18334  df-meet 18335  df-p0 18411  df-p1 18412  df-lat 18418  df-clat 18485  df-oposet 38700  df-ol 38702  df-oml 38703  df-covers 38790  df-ats 38791  df-atl 38822  df-cvlat 38846  df-hlat 38875  df-llines 39023  df-lplanes 39024  df-lvols 39025  df-lines 39026  df-psubsp 39028  df-pmap 39029  df-padd 39321  df-lhyp 39513
This theorem is referenced by:  cdlemefs29bpre0N  39941  cdlemefs29bpre1N  39942  cdlemefs29cpre1N  39943  cdlemefs29clN  39944  cdlemefs32fvaN  39947  cdlemefs32fva1  39948
  Copyright terms: Public domain W3C validator