Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl321anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl321anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) |
Ref | Expression |
---|---|
syl321anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 515 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl321anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
9 | 1, 2, 3, 6, 7, 8 | syl311anc 1386 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 df-3an 1091 |
This theorem is referenced by: syl322anc 1400 cxple2ad 25613 chordthmlem3 25717 nosupbnd1lem3 33650 nosupbnd1lem4 33651 noinfbnd1lem3 33665 noinfbnd1lem4 33666 4noncolr2 37205 4noncolr1 37206 3atlem5 37238 2lplnj 37371 llnmod2i2 37614 dalawlem11 37632 dalawlem12 37633 cdleme43dN 38243 cdleme4gfv 38258 cdlemeg46nlpq 38268 cdlemg17bq 38424 cdlemg31b0N 38445 cdlemg31b0a 38446 cdlemg31c 38450 cdlemg39 38467 cdlemk47 38700 lincext3 45470 |
Copyright terms: Public domain | W3C validator |