Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl321anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl33anc.6 | ⊢ (𝜑 → 𝜁) |
syl321anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) |
Ref | Expression |
---|---|
syl321anc | ⊢ (𝜑 → 𝜎) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
8 | syl321anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
9 | 1, 2, 3, 6, 7, 8 | syl311anc 1382 | 1 ⊢ (𝜑 → 𝜎) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: syl322anc 1396 cxple2ad 25785 chordthmlem3 25889 nosupbnd1lem3 33840 nosupbnd1lem4 33841 noinfbnd1lem3 33855 noinfbnd1lem4 33856 4noncolr2 37395 4noncolr1 37396 3atlem5 37428 2lplnj 37561 llnmod2i2 37804 dalawlem11 37822 dalawlem12 37823 cdleme43dN 38433 cdleme4gfv 38448 cdlemeg46nlpq 38458 cdlemg17bq 38614 cdlemg31b0N 38635 cdlemg31b0a 38636 cdlemg31c 38640 cdlemg39 38657 cdlemk47 38890 lincext3 45685 |
Copyright terms: Public domain | W3C validator |