| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl321anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl321anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) |
| Ref | Expression |
|---|---|
| syl321anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl321anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
| 9 | 1, 2, 3, 6, 7, 8 | syl311anc 1386 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl322anc 1400 cxple2ad 26662 chordthmlem3 26772 nosupbnd1lem3 27650 nosupbnd1lem4 27651 noinfbnd1lem3 27665 noinfbnd1lem4 27666 4noncolr2 39573 4noncolr1 39574 3atlem5 39606 2lplnj 39739 llnmod2i2 39982 dalawlem11 40000 dalawlem12 40001 cdleme43dN 40611 cdleme4gfv 40626 cdlemeg46nlpq 40636 cdlemg17bq 40792 cdlemg31b0N 40813 cdlemg31b0a 40814 cdlemg31c 40818 cdlemg39 40835 cdlemk47 41068 lincext3 48581 |
| Copyright terms: Public domain | W3C validator |