MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  syl321anc Structured version   Visualization version   GIF version

Theorem syl321anc 1394
Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.)
Hypotheses
Ref Expression
syl3anc.1 (𝜑𝜓)
syl3anc.2 (𝜑𝜒)
syl3anc.3 (𝜑𝜃)
syl3Xanc.4 (𝜑𝜏)
syl23anc.5 (𝜑𝜂)
syl33anc.6 (𝜑𝜁)
syl321anc.7 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ 𝜁) → 𝜎)
Assertion
Ref Expression
syl321anc (𝜑𝜎)

Proof of Theorem syl321anc
StepHypRef Expression
1 syl3anc.1 . 2 (𝜑𝜓)
2 syl3anc.2 . 2 (𝜑𝜒)
3 syl3anc.3 . 2 (𝜑𝜃)
4 syl3Xanc.4 . . 3 (𝜑𝜏)
5 syl23anc.5 . . 3 (𝜑𝜂)
64, 5jca 511 . 2 (𝜑 → (𝜏𝜂))
7 syl33anc.6 . 2 (𝜑𝜁)
8 syl321anc.7 . 2 (((𝜓𝜒𝜃) ∧ (𝜏𝜂) ∧ 𝜁) → 𝜎)
91, 2, 3, 6, 7, 8syl311anc 1386 1 (𝜑𝜎)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088
This theorem is referenced by:  syl322anc  1400  cxple2ad  26641  chordthmlem3  26751  nosupbnd1lem3  27629  nosupbnd1lem4  27630  noinfbnd1lem3  27644  noinfbnd1lem4  27645  4noncolr2  39440  4noncolr1  39441  3atlem5  39473  2lplnj  39606  llnmod2i2  39849  dalawlem11  39867  dalawlem12  39868  cdleme43dN  40478  cdleme4gfv  40493  cdlemeg46nlpq  40503  cdlemg17bq  40659  cdlemg31b0N  40680  cdlemg31b0a  40681  cdlemg31c  40685  cdlemg39  40702  cdlemk47  40935  lincext3  48374
  Copyright terms: Public domain W3C validator