| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl321anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Jul-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl33anc.6 | ⊢ (𝜑 → 𝜁) |
| syl321anc.7 | ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) |
| Ref | Expression |
|---|---|
| syl321anc | ⊢ (𝜑 → 𝜎) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . 2 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 4 | syl3Xanc.4 | . . 3 ⊢ (𝜑 → 𝜏) | |
| 5 | syl23anc.5 | . . 3 ⊢ (𝜑 → 𝜂) | |
| 6 | 4, 5 | jca 511 | . 2 ⊢ (𝜑 → (𝜏 ∧ 𝜂)) |
| 7 | syl33anc.6 | . 2 ⊢ (𝜑 → 𝜁) | |
| 8 | syl321anc.7 | . 2 ⊢ (((𝜓 ∧ 𝜒 ∧ 𝜃) ∧ (𝜏 ∧ 𝜂) ∧ 𝜁) → 𝜎) | |
| 9 | 1, 2, 3, 6, 7, 8 | syl311anc 1386 | 1 ⊢ (𝜑 → 𝜎) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: syl322anc 1400 cxple2ad 26650 chordthmlem3 26760 nosupbnd1lem3 27638 nosupbnd1lem4 27639 noinfbnd1lem3 27653 noinfbnd1lem4 27654 4noncolr2 39433 4noncolr1 39434 3atlem5 39466 2lplnj 39599 llnmod2i2 39842 dalawlem11 39860 dalawlem12 39861 cdleme43dN 40471 cdleme4gfv 40486 cdlemeg46nlpq 40496 cdlemg17bq 40652 cdlemg31b0N 40673 cdlemg31b0a 40674 cdlemg31c 40678 cdlemg39 40695 cdlemk47 40928 lincext3 48442 |
| Copyright terms: Public domain | W3C validator |