Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27a Structured version   Visualization version   GIF version

Theorem cdlemg27a 37988
Description: For use with case when (𝑃 𝑣) (𝑄 (𝑅𝐹)) or (𝑃 𝑣) (𝑄 (𝑅𝐹)) is zero, letting us establish ¬ 𝑧 𝑊𝑧 (𝑃 𝑣) via 4atex 37372. TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))

Proof of Theorem cdlemg27a
StepHypRef Expression
1 simp11 1200 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1201 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp31 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
4 simp13 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
5 simp2r 1197 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
6 simp33 1208 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
7 cdlemg12.l . . . . 5 = (le‘𝐾)
8 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 37465 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
131, 2, 5, 6, 12syl112anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
147, 9, 10, 11trlle 37480 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
151, 5, 14syl2anc 587 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
16 cdlemg12.j . . . 4 = (join‘𝐾)
177, 16, 8, 9lhp2atnle 37329 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣 ≠ (𝑅𝐹)) ∧ (𝑣𝐴𝑣 𝑊) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊)) → ¬ (𝑅𝐹) (𝑃 𝑣))
181, 2, 3, 4, 13, 15, 17syl312anc 1388 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑣))
19 simp11l 1281 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
20 simp12l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
21 simp13l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
227, 16, 8hlatlej1 36671 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → 𝑃 (𝑃 𝑣))
2319, 20, 21, 22syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 (𝑃 𝑣))
24 simp32 1207 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 (𝑃 𝑣))
2519hllatd 36660 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
26 eqid 2798 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2726, 8atbase 36585 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2820, 27syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
29 simp2l 1196 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝐴)
3026, 8atbase 36585 . . . . . 6 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 ∈ (Base‘𝐾))
3226, 16, 8hlatjcl 36663 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
3319, 20, 21, 32syl3anc 1368 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ∈ (Base‘𝐾))
3426, 7, 16latjle12 17664 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑣) ∧ 𝑧 (𝑃 𝑣)) ↔ (𝑃 𝑧) (𝑃 𝑣)))
3525, 28, 31, 33, 34syl13anc 1369 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 (𝑃 𝑣) ∧ 𝑧 (𝑃 𝑣)) ↔ (𝑃 𝑧) (𝑃 𝑣)))
3623, 24, 35mpbi2and 711 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑧) (𝑃 𝑣))
3726, 8atbase 36585 . . . . 5 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
3813, 37syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ (Base‘𝐾))
3926, 16, 8hlatjcl 36663 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → (𝑃 𝑧) ∈ (Base‘𝐾))
4019, 20, 29, 39syl3anc 1368 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑧) ∈ (Base‘𝐾))
4126, 7lattr 17658 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → (((𝑅𝐹) (𝑃 𝑧) ∧ (𝑃 𝑧) (𝑃 𝑣)) → (𝑅𝐹) (𝑃 𝑣)))
4225, 38, 40, 33, 41syl13anc 1369 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝑅𝐹) (𝑃 𝑧) ∧ (𝑃 𝑧) (𝑃 𝑣)) → (𝑅𝐹) (𝑃 𝑣)))
4336, 42mpan2d 693 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) (𝑃 𝑧) → (𝑅𝐹) (𝑃 𝑣)))
4418, 43mtod 201 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2987   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  lecple 16564  joincjn 17546  meetcmee 17547  Latclat 17647  Atomscatm 36559  HLchlt 36646  LHypclh 37280  LTrncltrn 37397  trLctrl 37454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-proset 17530  df-poset 17548  df-plt 17560  df-lub 17576  df-glb 17577  df-join 17578  df-meet 17579  df-p0 17641  df-p1 17642  df-lat 17648  df-clat 17710  df-oposet 36472  df-ol 36474  df-oml 36475  df-covers 36562  df-ats 36563  df-atl 36594  df-cvlat 36618  df-hlat 36647  df-psubsp 36799  df-pmap 36800  df-padd 37092  df-lhyp 37284  df-laut 37285  df-ldil 37400  df-ltrn 37401  df-trl 37455
This theorem is referenced by:  cdlemg28a  37989
  Copyright terms: Public domain W3C validator