Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27a Structured version   Visualization version   GIF version

Theorem cdlemg27a 40659
Description: For use with case when (𝑃 𝑣) (𝑄 (𝑅𝐹)) or (𝑃 𝑣) (𝑄 (𝑅𝐹)) is zero, letting us establish ¬ 𝑧 𝑊𝑧 (𝑃 𝑣) via 4atex 40043. TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))

Proof of Theorem cdlemg27a
StepHypRef Expression
1 simp11 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1205 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp31 1210 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
4 simp13 1206 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
5 simp2r 1201 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
6 simp33 1212 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
7 cdlemg12.l . . . . 5 = (le‘𝐾)
8 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 40136 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
131, 2, 5, 6, 12syl112anc 1376 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
147, 9, 10, 11trlle 40151 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
151, 5, 14syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
16 cdlemg12.j . . . 4 = (join‘𝐾)
177, 16, 8, 9lhp2atnle 40000 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣 ≠ (𝑅𝐹)) ∧ (𝑣𝐴𝑣 𝑊) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊)) → ¬ (𝑅𝐹) (𝑃 𝑣))
181, 2, 3, 4, 13, 15, 17syl312anc 1393 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑣))
19 simp11l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
20 simp12l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
21 simp13l 1289 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
227, 16, 8hlatlej1 39341 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → 𝑃 (𝑃 𝑣))
2319, 20, 21, 22syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 (𝑃 𝑣))
24 simp32 1211 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 (𝑃 𝑣))
2519hllatd 39330 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
26 eqid 2729 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2726, 8atbase 39255 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2820, 27syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
29 simp2l 1200 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝐴)
3026, 8atbase 39255 . . . . . 6 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 ∈ (Base‘𝐾))
3226, 16, 8hlatjcl 39333 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
3319, 20, 21, 32syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ∈ (Base‘𝐾))
3426, 7, 16latjle12 18385 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑣) ∧ 𝑧 (𝑃 𝑣)) ↔ (𝑃 𝑧) (𝑃 𝑣)))
3525, 28, 31, 33, 34syl13anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 (𝑃 𝑣) ∧ 𝑧 (𝑃 𝑣)) ↔ (𝑃 𝑧) (𝑃 𝑣)))
3623, 24, 35mpbi2and 712 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑧) (𝑃 𝑣))
3726, 8atbase 39255 . . . . 5 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
3813, 37syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ (Base‘𝐾))
3926, 16, 8hlatjcl 39333 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → (𝑃 𝑧) ∈ (Base‘𝐾))
4019, 20, 29, 39syl3anc 1373 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑧) ∈ (Base‘𝐾))
4126, 7lattr 18379 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → (((𝑅𝐹) (𝑃 𝑧) ∧ (𝑃 𝑧) (𝑃 𝑣)) → (𝑅𝐹) (𝑃 𝑣)))
4225, 38, 40, 33, 41syl13anc 1374 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝑅𝐹) (𝑃 𝑧) ∧ (𝑃 𝑧) (𝑃 𝑣)) → (𝑅𝐹) (𝑃 𝑣)))
4336, 42mpan2d 694 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) (𝑃 𝑧) → (𝑅𝐹) (𝑃 𝑣)))
4418, 43mtod 198 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5102  cfv 6499  (class class class)co 7369  Basecbs 17155  lecple 17203  joincjn 18248  meetcmee 18249  Latclat 18366  Atomscatm 39229  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126
This theorem is referenced by:  cdlemg28a  40660
  Copyright terms: Public domain W3C validator