Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemg27a Structured version   Visualization version   GIF version

Theorem cdlemg27a 38706
Description: For use with case when (𝑃 𝑣) (𝑄 (𝑅𝐹)) or (𝑃 𝑣) (𝑄 (𝑅𝐹)) is zero, letting us establish ¬ 𝑧 𝑊𝑧 (𝑃 𝑣) via 4atex 38090. TODO: Fix comment. (Contributed by NM, 28-May-2013.)
Hypotheses
Ref Expression
cdlemg12.l = (le‘𝐾)
cdlemg12.j = (join‘𝐾)
cdlemg12.m = (meet‘𝐾)
cdlemg12.a 𝐴 = (Atoms‘𝐾)
cdlemg12.h 𝐻 = (LHyp‘𝐾)
cdlemg12.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
cdlemg12b.r 𝑅 = ((trL‘𝐾)‘𝑊)
Assertion
Ref Expression
cdlemg27a ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))

Proof of Theorem cdlemg27a
StepHypRef Expression
1 simp11 1202 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simp12 1203 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃𝐴 ∧ ¬ 𝑃 𝑊))
3 simp31 1208 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣 ≠ (𝑅𝐹))
4 simp13 1204 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑣𝐴𝑣 𝑊))
5 simp2r 1199 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐹𝑇)
6 simp33 1210 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝐹𝑃) ≠ 𝑃)
7 cdlemg12.l . . . . 5 = (le‘𝐾)
8 cdlemg12.a . . . . 5 𝐴 = (Atoms‘𝐾)
9 cdlemg12.h . . . . 5 𝐻 = (LHyp‘𝐾)
10 cdlemg12.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
11 cdlemg12b.r . . . . 5 𝑅 = ((trL‘𝐾)‘𝑊)
127, 8, 9, 10, 11trlat 38183 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝐹𝑇 ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
131, 2, 5, 6, 12syl112anc 1373 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ 𝐴)
147, 9, 10, 11trlle 38198 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝐹𝑇) → (𝑅𝐹) 𝑊)
151, 5, 14syl2anc 584 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) 𝑊)
16 cdlemg12.j . . . 4 = (join‘𝐾)
177, 16, 8, 9lhp2atnle 38047 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ 𝑣 ≠ (𝑅𝐹)) ∧ (𝑣𝐴𝑣 𝑊) ∧ ((𝑅𝐹) ∈ 𝐴 ∧ (𝑅𝐹) 𝑊)) → ¬ (𝑅𝐹) (𝑃 𝑣))
181, 2, 3, 4, 13, 15, 17syl312anc 1390 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑣))
19 simp11l 1283 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ HL)
20 simp12l 1285 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃𝐴)
21 simp13l 1287 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑣𝐴)
227, 16, 8hlatlej1 37389 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → 𝑃 (𝑃 𝑣))
2319, 20, 21, 22syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 (𝑃 𝑣))
24 simp32 1209 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 (𝑃 𝑣))
2519hllatd 37378 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝐾 ∈ Lat)
26 eqid 2738 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
2726, 8atbase 37303 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
2820, 27syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑃 ∈ (Base‘𝐾))
29 simp2l 1198 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧𝐴)
3026, 8atbase 37303 . . . . . 6 (𝑧𝐴𝑧 ∈ (Base‘𝐾))
3129, 30syl 17 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → 𝑧 ∈ (Base‘𝐾))
3226, 16, 8hlatjcl 37381 . . . . . 6 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑣𝐴) → (𝑃 𝑣) ∈ (Base‘𝐾))
3319, 20, 21, 32syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑣) ∈ (Base‘𝐾))
3426, 7, 16latjle12 18168 . . . . 5 ((𝐾 ∈ Lat ∧ (𝑃 ∈ (Base‘𝐾) ∧ 𝑧 ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → ((𝑃 (𝑃 𝑣) ∧ 𝑧 (𝑃 𝑣)) ↔ (𝑃 𝑧) (𝑃 𝑣)))
3525, 28, 31, 33, 34syl13anc 1371 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑃 (𝑃 𝑣) ∧ 𝑧 (𝑃 𝑣)) ↔ (𝑃 𝑧) (𝑃 𝑣)))
3623, 24, 35mpbi2and 709 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑧) (𝑃 𝑣))
3726, 8atbase 37303 . . . . 5 ((𝑅𝐹) ∈ 𝐴 → (𝑅𝐹) ∈ (Base‘𝐾))
3813, 37syl 17 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑅𝐹) ∈ (Base‘𝐾))
3926, 16, 8hlatjcl 37381 . . . . 5 ((𝐾 ∈ HL ∧ 𝑃𝐴𝑧𝐴) → (𝑃 𝑧) ∈ (Base‘𝐾))
4019, 20, 29, 39syl3anc 1370 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (𝑃 𝑧) ∈ (Base‘𝐾))
4126, 7lattr 18162 . . . 4 ((𝐾 ∈ Lat ∧ ((𝑅𝐹) ∈ (Base‘𝐾) ∧ (𝑃 𝑧) ∈ (Base‘𝐾) ∧ (𝑃 𝑣) ∈ (Base‘𝐾))) → (((𝑅𝐹) (𝑃 𝑧) ∧ (𝑃 𝑧) (𝑃 𝑣)) → (𝑅𝐹) (𝑃 𝑣)))
4225, 38, 40, 33, 41syl13anc 1371 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → (((𝑅𝐹) (𝑃 𝑧) ∧ (𝑃 𝑧) (𝑃 𝑣)) → (𝑅𝐹) (𝑃 𝑣)))
4336, 42mpan2d 691 . 2 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ((𝑅𝐹) (𝑃 𝑧) → (𝑅𝐹) (𝑃 𝑣)))
4418, 43mtod 197 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑣𝐴𝑣 𝑊)) ∧ (𝑧𝐴𝐹𝑇) ∧ (𝑣 ≠ (𝑅𝐹) ∧ 𝑧 (𝑃 𝑣) ∧ (𝐹𝑃) ≠ 𝑃)) → ¬ (𝑅𝐹) (𝑃 𝑧))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  Atomscatm 37277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  trLctrl 38172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173
This theorem is referenced by:  cdlemg28a  38707
  Copyright terms: Public domain W3C validator