| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5c | Structured version Visualization version GIF version | ||
| Description: Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
| flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
| flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
| flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
| flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
| flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
| flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
| Ref | Expression |
|---|---|
| flt4lem5c | ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt4lem5a.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | 1 | nnsqcld 14153 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| 3 | flt4lem5a.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 4 | 3 | nnsqcld 14153 | . . . 4 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 5 | flt4lem5a.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 6 | flt4lem5a.1 | . . . . 5 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
| 7 | 2prm 16605 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 8 | 1 | nnzd 12501 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 9 | prmdvdssq 16631 | . . . . . 6 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
| 10 | 7, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
| 11 | 6, 10 | mtbid 324 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
| 12 | flt4lem5a.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
| 13 | 2nn 12205 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ) |
| 15 | rplpwr 16471 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
| 16 | 1, 5, 14, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
| 17 | 12, 16 | mpd 15 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
| 18 | 1 | nncnd 12148 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | 18 | flt4lem 42763 | . . . . . 6 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
| 20 | 3 | nncnd 12148 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 21 | 20 | flt4lem 42763 | . . . . . 6 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
| 22 | 19, 21 | oveq12d 7370 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
| 23 | flt4lem5a.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
| 24 | 22, 23 | eqtr3d 2770 | . . . 4 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
| 25 | 2, 4, 5, 11, 17, 24 | flt4lem1 42764 | . . 3 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
| 26 | flt4lem5a.n | . . . 4 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
| 27 | 26 | pythagtriplem13 16741 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
| 28 | 25, 27 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 29 | flt4lem5a.m | . . . 4 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
| 30 | 29 | pythagtriplem11 16739 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
| 31 | 25, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 32 | flt4lem5a.r | . . 3 ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) | |
| 33 | flt4lem5a.s | . . 3 ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) | |
| 34 | 29, 26, 32, 33, 1, 3, 5, 6, 12, 23 | flt4lem5a 42770 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
| 35 | 28 | nnzd 12501 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 36 | 8, 35 | gcdcomd 16427 | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴)) |
| 37 | 31 | nnzd 12501 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 38 | 35, 37 | gcdcomd 16427 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 39 | 29, 26 | flt4lem5 42768 | . . . . . 6 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1) |
| 40 | 25, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 41 | 38, 40 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
| 42 | 28 | nnsqcld 14153 | . . . . . . 7 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
| 43 | 42 | nncnd 12148 | . . . . . 6 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
| 44 | 2 | nncnd 12148 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 45 | 43, 44 | addcomd 11322 | . . . . 5 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2))) |
| 46 | 45, 34 | eqtrd 2768 | . . . 4 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2)) |
| 47 | 28, 1, 31, 41, 46 | fltabcoprm 42760 | . . 3 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
| 48 | 36, 47 | eqtrd 2768 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
| 49 | 32, 33 | pythagtriplem16 16744 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 = (2 · (𝑅 · 𝑆))) |
| 50 | 1, 28, 31, 34, 48, 6, 49 | syl312anc 1393 | 1 ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 class class class wbr 5093 ‘cfv 6486 (class class class)co 7352 1c1 11014 + caddc 11016 · cmul 11018 − cmin 11351 / cdiv 11781 ℕcn 12132 2c2 12187 4c4 12189 ℤcz 12475 ↑cexp 13970 √csqrt 15142 ∥ cdvds 16165 gcd cgcd 16407 ℙcprime 16584 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-n0 12389 df-z 12476 df-uz 12739 df-rp 12893 df-fz 13410 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-dvds 16166 df-gcd 16408 df-prm 16585 |
| This theorem is referenced by: flt4lem5e 42774 |
| Copyright terms: Public domain | W3C validator |