Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5c Structured version   Visualization version   GIF version

Theorem flt4lem5c 41392
Description: Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m ๐‘€ = (((โˆšโ€˜(๐ถ + (๐ตโ†‘2))) + (โˆšโ€˜(๐ถ โˆ’ (๐ตโ†‘2)))) / 2)
flt4lem5a.n ๐‘ = (((โˆšโ€˜(๐ถ + (๐ตโ†‘2))) โˆ’ (โˆšโ€˜(๐ถ โˆ’ (๐ตโ†‘2)))) / 2)
flt4lem5a.r ๐‘… = (((โˆšโ€˜(๐‘€ + ๐‘)) + (โˆšโ€˜(๐‘€ โˆ’ ๐‘))) / 2)
flt4lem5a.s ๐‘† = (((โˆšโ€˜(๐‘€ + ๐‘)) โˆ’ (โˆšโ€˜(๐‘€ โˆ’ ๐‘))) / 2)
flt4lem5a.a (๐œ‘ โ†’ ๐ด โˆˆ โ„•)
flt4lem5a.b (๐œ‘ โ†’ ๐ต โˆˆ โ„•)
flt4lem5a.c (๐œ‘ โ†’ ๐ถ โˆˆ โ„•)
flt4lem5a.1 (๐œ‘ โ†’ ยฌ 2 โˆฅ ๐ด)
flt4lem5a.2 (๐œ‘ โ†’ (๐ด gcd ๐ถ) = 1)
flt4lem5a.3 (๐œ‘ โ†’ ((๐ดโ†‘4) + (๐ตโ†‘4)) = (๐ถโ†‘2))
Assertion
Ref Expression
flt4lem5c (๐œ‘ โ†’ ๐‘ = (2 ยท (๐‘… ยท ๐‘†)))

Proof of Theorem flt4lem5c
StepHypRef Expression
1 flt4lem5a.a . 2 (๐œ‘ โ†’ ๐ด โˆˆ โ„•)
21nnsqcld 14203 . . . 4 (๐œ‘ โ†’ (๐ดโ†‘2) โˆˆ โ„•)
3 flt4lem5a.b . . . . 5 (๐œ‘ โ†’ ๐ต โˆˆ โ„•)
43nnsqcld 14203 . . . 4 (๐œ‘ โ†’ (๐ตโ†‘2) โˆˆ โ„•)
5 flt4lem5a.c . . . 4 (๐œ‘ โ†’ ๐ถ โˆˆ โ„•)
6 flt4lem5a.1 . . . . 5 (๐œ‘ โ†’ ยฌ 2 โˆฅ ๐ด)
7 2prm 16625 . . . . . 6 2 โˆˆ โ„™
81nnzd 12581 . . . . . 6 (๐œ‘ โ†’ ๐ด โˆˆ โ„ค)
9 prmdvdssq 16651 . . . . . 6 ((2 โˆˆ โ„™ โˆง ๐ด โˆˆ โ„ค) โ†’ (2 โˆฅ ๐ด โ†” 2 โˆฅ (๐ดโ†‘2)))
107, 8, 9sylancr 587 . . . . 5 (๐œ‘ โ†’ (2 โˆฅ ๐ด โ†” 2 โˆฅ (๐ดโ†‘2)))
116, 10mtbid 323 . . . 4 (๐œ‘ โ†’ ยฌ 2 โˆฅ (๐ดโ†‘2))
12 flt4lem5a.2 . . . . 5 (๐œ‘ โ†’ (๐ด gcd ๐ถ) = 1)
13 2nn 12281 . . . . . . 7 2 โˆˆ โ„•
1413a1i 11 . . . . . 6 (๐œ‘ โ†’ 2 โˆˆ โ„•)
15 rplpwr 16495 . . . . . 6 ((๐ด โˆˆ โ„• โˆง ๐ถ โˆˆ โ„• โˆง 2 โˆˆ โ„•) โ†’ ((๐ด gcd ๐ถ) = 1 โ†’ ((๐ดโ†‘2) gcd ๐ถ) = 1))
161, 5, 14, 15syl3anc 1371 . . . . 5 (๐œ‘ โ†’ ((๐ด gcd ๐ถ) = 1 โ†’ ((๐ดโ†‘2) gcd ๐ถ) = 1))
1712, 16mpd 15 . . . 4 (๐œ‘ โ†’ ((๐ดโ†‘2) gcd ๐ถ) = 1)
181nncnd 12224 . . . . . . 7 (๐œ‘ โ†’ ๐ด โˆˆ โ„‚)
1918flt4lem 41383 . . . . . 6 (๐œ‘ โ†’ (๐ดโ†‘4) = ((๐ดโ†‘2)โ†‘2))
203nncnd 12224 . . . . . . 7 (๐œ‘ โ†’ ๐ต โˆˆ โ„‚)
2120flt4lem 41383 . . . . . 6 (๐œ‘ โ†’ (๐ตโ†‘4) = ((๐ตโ†‘2)โ†‘2))
2219, 21oveq12d 7423 . . . . 5 (๐œ‘ โ†’ ((๐ดโ†‘4) + (๐ตโ†‘4)) = (((๐ดโ†‘2)โ†‘2) + ((๐ตโ†‘2)โ†‘2)))
23 flt4lem5a.3 . . . . 5 (๐œ‘ โ†’ ((๐ดโ†‘4) + (๐ตโ†‘4)) = (๐ถโ†‘2))
2422, 23eqtr3d 2774 . . . 4 (๐œ‘ โ†’ (((๐ดโ†‘2)โ†‘2) + ((๐ตโ†‘2)โ†‘2)) = (๐ถโ†‘2))
252, 4, 5, 11, 17, 24flt4lem1 41384 . . 3 (๐œ‘ โ†’ (((๐ดโ†‘2) โˆˆ โ„• โˆง (๐ตโ†‘2) โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง (((๐ดโ†‘2)โ†‘2) + ((๐ตโ†‘2)โ†‘2)) = (๐ถโ†‘2) โˆง (((๐ดโ†‘2) gcd (๐ตโ†‘2)) = 1 โˆง ยฌ 2 โˆฅ (๐ดโ†‘2))))
26 flt4lem5a.n . . . 4 ๐‘ = (((โˆšโ€˜(๐ถ + (๐ตโ†‘2))) โˆ’ (โˆšโ€˜(๐ถ โˆ’ (๐ตโ†‘2)))) / 2)
2726pythagtriplem13 16756 . . 3 ((((๐ดโ†‘2) โˆˆ โ„• โˆง (๐ตโ†‘2) โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง (((๐ดโ†‘2)โ†‘2) + ((๐ตโ†‘2)โ†‘2)) = (๐ถโ†‘2) โˆง (((๐ดโ†‘2) gcd (๐ตโ†‘2)) = 1 โˆง ยฌ 2 โˆฅ (๐ดโ†‘2))) โ†’ ๐‘ โˆˆ โ„•)
2825, 27syl 17 . 2 (๐œ‘ โ†’ ๐‘ โˆˆ โ„•)
29 flt4lem5a.m . . . 4 ๐‘€ = (((โˆšโ€˜(๐ถ + (๐ตโ†‘2))) + (โˆšโ€˜(๐ถ โˆ’ (๐ตโ†‘2)))) / 2)
3029pythagtriplem11 16754 . . 3 ((((๐ดโ†‘2) โˆˆ โ„• โˆง (๐ตโ†‘2) โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง (((๐ดโ†‘2)โ†‘2) + ((๐ตโ†‘2)โ†‘2)) = (๐ถโ†‘2) โˆง (((๐ดโ†‘2) gcd (๐ตโ†‘2)) = 1 โˆง ยฌ 2 โˆฅ (๐ดโ†‘2))) โ†’ ๐‘€ โˆˆ โ„•)
3125, 30syl 17 . 2 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„•)
32 flt4lem5a.r . . 3 ๐‘… = (((โˆšโ€˜(๐‘€ + ๐‘)) + (โˆšโ€˜(๐‘€ โˆ’ ๐‘))) / 2)
33 flt4lem5a.s . . 3 ๐‘† = (((โˆšโ€˜(๐‘€ + ๐‘)) โˆ’ (โˆšโ€˜(๐‘€ โˆ’ ๐‘))) / 2)
3429, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5a 41390 . 2 (๐œ‘ โ†’ ((๐ดโ†‘2) + (๐‘โ†‘2)) = (๐‘€โ†‘2))
3528nnzd 12581 . . . 4 (๐œ‘ โ†’ ๐‘ โˆˆ โ„ค)
368, 35gcdcomd 16451 . . 3 (๐œ‘ โ†’ (๐ด gcd ๐‘) = (๐‘ gcd ๐ด))
3731nnzd 12581 . . . . . 6 (๐œ‘ โ†’ ๐‘€ โˆˆ โ„ค)
3835, 37gcdcomd 16451 . . . . 5 (๐œ‘ โ†’ (๐‘ gcd ๐‘€) = (๐‘€ gcd ๐‘))
3929, 26flt4lem5 41388 . . . . . 6 ((((๐ดโ†‘2) โˆˆ โ„• โˆง (๐ตโ†‘2) โˆˆ โ„• โˆง ๐ถ โˆˆ โ„•) โˆง (((๐ดโ†‘2)โ†‘2) + ((๐ตโ†‘2)โ†‘2)) = (๐ถโ†‘2) โˆง (((๐ดโ†‘2) gcd (๐ตโ†‘2)) = 1 โˆง ยฌ 2 โˆฅ (๐ดโ†‘2))) โ†’ (๐‘€ gcd ๐‘) = 1)
4025, 39syl 17 . . . . 5 (๐œ‘ โ†’ (๐‘€ gcd ๐‘) = 1)
4138, 40eqtrd 2772 . . . 4 (๐œ‘ โ†’ (๐‘ gcd ๐‘€) = 1)
4228nnsqcld 14203 . . . . . . 7 (๐œ‘ โ†’ (๐‘โ†‘2) โˆˆ โ„•)
4342nncnd 12224 . . . . . 6 (๐œ‘ โ†’ (๐‘โ†‘2) โˆˆ โ„‚)
442nncnd 12224 . . . . . 6 (๐œ‘ โ†’ (๐ดโ†‘2) โˆˆ โ„‚)
4543, 44addcomd 11412 . . . . 5 (๐œ‘ โ†’ ((๐‘โ†‘2) + (๐ดโ†‘2)) = ((๐ดโ†‘2) + (๐‘โ†‘2)))
4645, 34eqtrd 2772 . . . 4 (๐œ‘ โ†’ ((๐‘โ†‘2) + (๐ดโ†‘2)) = (๐‘€โ†‘2))
4728, 1, 31, 41, 46fltabcoprm 41380 . . 3 (๐œ‘ โ†’ (๐‘ gcd ๐ด) = 1)
4836, 47eqtrd 2772 . 2 (๐œ‘ โ†’ (๐ด gcd ๐‘) = 1)
4932, 33pythagtriplem16 16759 . 2 (((๐ด โˆˆ โ„• โˆง ๐‘ โˆˆ โ„• โˆง ๐‘€ โˆˆ โ„•) โˆง ((๐ดโ†‘2) + (๐‘โ†‘2)) = (๐‘€โ†‘2) โˆง ((๐ด gcd ๐‘) = 1 โˆง ยฌ 2 โˆฅ ๐ด)) โ†’ ๐‘ = (2 ยท (๐‘… ยท ๐‘†)))
501, 28, 31, 34, 48, 6, 49syl312anc 1391 1 (๐œ‘ โ†’ ๐‘ = (2 ยท (๐‘… ยท ๐‘†)))
Colors of variables: wff setvar class
Syntax hints:  ยฌ wn 3   โ†’ wi 4   โ†” wb 205   โˆง wa 396   โˆง w3a 1087   = wceq 1541   โˆˆ wcel 2106   class class class wbr 5147  โ€˜cfv 6540  (class class class)co 7405  1c1 11107   + caddc 11109   ยท cmul 11111   โˆ’ cmin 11440   / cdiv 11867  โ„•cn 12208  2c2 12263  4c4 12265  โ„คcz 12554  โ†‘cexp 14023  โˆšcsqrt 15176   โˆฅ cdvds 16193   gcd cgcd 16431  โ„™cprime 16604
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-2 12271  df-3 12272  df-4 12273  df-n0 12469  df-z 12555  df-uz 12819  df-rp 12971  df-fz 13481  df-fl 13753  df-mod 13831  df-seq 13963  df-exp 14024  df-cj 15042  df-re 15043  df-im 15044  df-sqrt 15178  df-abs 15179  df-dvds 16194  df-gcd 16432  df-prm 16605
This theorem is referenced by:  flt4lem5e  41394
  Copyright terms: Public domain W3C validator