| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5c | Structured version Visualization version GIF version | ||
| Description: Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
| Ref | Expression |
|---|---|
| flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
| flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
| flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
| flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
| flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
| flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
| flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
| flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
| flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
| flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
| Ref | Expression |
|---|---|
| flt4lem5c | ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | flt4lem5a.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
| 2 | 1 | nnsqcld 14216 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
| 3 | flt4lem5a.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
| 4 | 3 | nnsqcld 14216 | . . . 4 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
| 5 | flt4lem5a.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
| 6 | flt4lem5a.1 | . . . . 5 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
| 7 | 2prm 16669 | . . . . . 6 ⊢ 2 ∈ ℙ | |
| 8 | 1 | nnzd 12563 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
| 9 | prmdvdssq 16695 | . . . . . 6 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
| 10 | 7, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
| 11 | 6, 10 | mtbid 324 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
| 12 | flt4lem5a.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
| 13 | 2nn 12266 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ) |
| 15 | rplpwr 16535 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
| 16 | 1, 5, 14, 15 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
| 17 | 12, 16 | mpd 15 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
| 18 | 1 | nncnd 12209 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| 19 | 18 | flt4lem 42640 | . . . . . 6 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
| 20 | 3 | nncnd 12209 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| 21 | 20 | flt4lem 42640 | . . . . . 6 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
| 22 | 19, 21 | oveq12d 7408 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
| 23 | flt4lem5a.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
| 24 | 22, 23 | eqtr3d 2767 | . . . 4 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
| 25 | 2, 4, 5, 11, 17, 24 | flt4lem1 42641 | . . 3 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
| 26 | flt4lem5a.n | . . . 4 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
| 27 | 26 | pythagtriplem13 16805 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
| 28 | 25, 27 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| 29 | flt4lem5a.m | . . . 4 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
| 30 | 29 | pythagtriplem11 16803 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
| 31 | 25, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 32 | flt4lem5a.r | . . 3 ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) | |
| 33 | flt4lem5a.s | . . 3 ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) | |
| 34 | 29, 26, 32, 33, 1, 3, 5, 6, 12, 23 | flt4lem5a 42647 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
| 35 | 28 | nnzd 12563 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
| 36 | 8, 35 | gcdcomd 16491 | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴)) |
| 37 | 31 | nnzd 12563 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 38 | 35, 37 | gcdcomd 16491 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
| 39 | 29, 26 | flt4lem5 42645 | . . . . . 6 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1) |
| 40 | 25, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
| 41 | 38, 40 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
| 42 | 28 | nnsqcld 14216 | . . . . . . 7 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
| 43 | 42 | nncnd 12209 | . . . . . 6 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
| 44 | 2 | nncnd 12209 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
| 45 | 43, 44 | addcomd 11383 | . . . . 5 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2))) |
| 46 | 45, 34 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2)) |
| 47 | 28, 1, 31, 41, 46 | fltabcoprm 42637 | . . 3 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
| 48 | 36, 47 | eqtrd 2765 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
| 49 | 32, 33 | pythagtriplem16 16808 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 = (2 · (𝑅 · 𝑆))) |
| 50 | 1, 28, 31, 34, 48, 6, 49 | syl312anc 1393 | 1 ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 class class class wbr 5110 ‘cfv 6514 (class class class)co 7390 1c1 11076 + caddc 11078 · cmul 11080 − cmin 11412 / cdiv 11842 ℕcn 12193 2c2 12248 4c4 12250 ℤcz 12536 ↑cexp 14033 √csqrt 15206 ∥ cdvds 16229 gcd cgcd 16471 ℙcprime 16648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-dvds 16230 df-gcd 16472 df-prm 16649 |
| This theorem is referenced by: flt4lem5e 42651 |
| Copyright terms: Public domain | W3C validator |