Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5c Structured version   Visualization version   GIF version

Theorem flt4lem5c 42641
Description: Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5c (𝜑𝑁 = (2 · (𝑅 · 𝑆)))

Proof of Theorem flt4lem5c
StepHypRef Expression
1 flt4lem5a.a . 2 (𝜑𝐴 ∈ ℕ)
21nnsqcld 14280 . . . 4 (𝜑 → (𝐴↑2) ∈ ℕ)
3 flt4lem5a.b . . . . 5 (𝜑𝐵 ∈ ℕ)
43nnsqcld 14280 . . . 4 (𝜑 → (𝐵↑2) ∈ ℕ)
5 flt4lem5a.c . . . 4 (𝜑𝐶 ∈ ℕ)
6 flt4lem5a.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝐴)
7 2prm 16726 . . . . . 6 2 ∈ ℙ
81nnzd 12638 . . . . . 6 (𝜑𝐴 ∈ ℤ)
9 prmdvdssq 16752 . . . . . 6 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
107, 8, 9sylancr 587 . . . . 5 (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
116, 10mtbid 324 . . . 4 (𝜑 → ¬ 2 ∥ (𝐴↑2))
12 flt4lem5a.2 . . . . 5 (𝜑 → (𝐴 gcd 𝐶) = 1)
13 2nn 12337 . . . . . . 7 2 ∈ ℕ
1413a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
15 rplpwr 16592 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
161, 5, 14, 15syl3anc 1370 . . . . 5 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
1712, 16mpd 15 . . . 4 (𝜑 → ((𝐴↑2) gcd 𝐶) = 1)
181nncnd 12280 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918flt4lem 42632 . . . . . 6 (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2))
203nncnd 12280 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2120flt4lem 42632 . . . . . 6 (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2))
2219, 21oveq12d 7449 . . . . 5 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2)))
23 flt4lem5a.3 . . . . 5 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
2422, 23eqtr3d 2777 . . . 4 (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2))
252, 4, 5, 11, 17, 24flt4lem1 42633 . . 3 (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))))
26 flt4lem5a.n . . . 4 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
2726pythagtriplem13 16861 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ)
2825, 27syl 17 . 2 (𝜑𝑁 ∈ ℕ)
29 flt4lem5a.m . . . 4 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
3029pythagtriplem11 16859 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ)
3125, 30syl 17 . 2 (𝜑𝑀 ∈ ℕ)
32 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
33 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
3429, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5a 42639 . 2 (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2))
3528nnzd 12638 . . . 4 (𝜑𝑁 ∈ ℤ)
368, 35gcdcomd 16548 . . 3 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
3731nnzd 12638 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3835, 37gcdcomd 16548 . . . . 5 (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
3929, 26flt4lem5 42637 . . . . . 6 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1)
4025, 39syl 17 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
4138, 40eqtrd 2775 . . . 4 (𝜑 → (𝑁 gcd 𝑀) = 1)
4228nnsqcld 14280 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℕ)
4342nncnd 12280 . . . . . 6 (𝜑 → (𝑁↑2) ∈ ℂ)
442nncnd 12280 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
4543, 44addcomd 11461 . . . . 5 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2)))
4645, 34eqtrd 2775 . . . 4 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2))
4728, 1, 31, 41, 46fltabcoprm 42629 . . 3 (𝜑 → (𝑁 gcd 𝐴) = 1)
4836, 47eqtrd 2775 . 2 (𝜑 → (𝐴 gcd 𝑁) = 1)
4932, 33pythagtriplem16 16864 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 = (2 · (𝑅 · 𝑆)))
501, 28, 31, 34, 48, 6, 49syl312anc 1390 1 (𝜑𝑁 = (2 · (𝑅 · 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  cfv 6563  (class class class)co 7431  1c1 11154   + caddc 11156   · cmul 11158  cmin 11490   / cdiv 11918  cn 12264  2c2 12319  4c4 12321  cz 12611  cexp 14099  csqrt 15269  cdvds 16287   gcd cgcd 16528  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-gcd 16529  df-prm 16706
This theorem is referenced by:  flt4lem5e  42643
  Copyright terms: Public domain W3C validator