![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5c | Structured version Visualization version GIF version |
Description: Part 2 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 22-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem5c | ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem5a.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | 1 | nnsqcld 14293 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
3 | flt4lem5a.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
4 | 3 | nnsqcld 14293 | . . . 4 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
5 | flt4lem5a.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
6 | flt4lem5a.1 | . . . . 5 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
7 | 2prm 16739 | . . . . . 6 ⊢ 2 ∈ ℙ | |
8 | 1 | nnzd 12666 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
9 | prmdvdssq 16765 | . . . . . 6 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
10 | 7, 8, 9 | sylancr 586 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
11 | 6, 10 | mtbid 324 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
12 | flt4lem5a.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
13 | 2nn 12366 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ) |
15 | rplpwr 16605 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
16 | 1, 5, 14, 15 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
17 | 12, 16 | mpd 15 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
18 | 1 | nncnd 12309 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18 | flt4lem 42600 | . . . . . 6 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
20 | 3 | nncnd 12309 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
21 | 20 | flt4lem 42600 | . . . . . 6 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
22 | 19, 21 | oveq12d 7466 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
23 | flt4lem5a.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
24 | 22, 23 | eqtr3d 2782 | . . . 4 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
25 | 2, 4, 5, 11, 17, 24 | flt4lem1 42601 | . . 3 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
26 | flt4lem5a.n | . . . 4 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
27 | 26 | pythagtriplem13 16874 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
28 | 25, 27 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
29 | flt4lem5a.m | . . . 4 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
30 | 29 | pythagtriplem11 16872 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
31 | 25, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
32 | flt4lem5a.r | . . 3 ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) | |
33 | flt4lem5a.s | . . 3 ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) | |
34 | 29, 26, 32, 33, 1, 3, 5, 6, 12, 23 | flt4lem5a 42607 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
35 | 28 | nnzd 12666 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | 8, 35 | gcdcomd 16560 | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴)) |
37 | 31 | nnzd 12666 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
38 | 35, 37 | gcdcomd 16560 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
39 | 29, 26 | flt4lem5 42605 | . . . . . 6 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1) |
40 | 25, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
41 | 38, 40 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
42 | 28 | nnsqcld 14293 | . . . . . . 7 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
43 | 42 | nncnd 12309 | . . . . . 6 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
44 | 2 | nncnd 12309 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
45 | 43, 44 | addcomd 11492 | . . . . 5 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2))) |
46 | 45, 34 | eqtrd 2780 | . . . 4 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2)) |
47 | 28, 1, 31, 41, 46 | fltabcoprm 42597 | . . 3 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
48 | 36, 47 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
49 | 32, 33 | pythagtriplem16 16877 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑁 = (2 · (𝑅 · 𝑆))) |
50 | 1, 28, 31, 34, 48, 6, 49 | syl312anc 1391 | 1 ⊢ (𝜑 → 𝑁 = (2 · (𝑅 · 𝑆))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 1c1 11185 + caddc 11187 · cmul 11189 − cmin 11520 / cdiv 11947 ℕcn 12293 2c2 12348 4c4 12350 ℤcz 12639 ↑cexp 14112 √csqrt 15282 ∥ cdvds 16302 gcd cgcd 16540 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-n0 12554 df-z 12640 df-uz 12904 df-rp 13058 df-fz 13568 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-gcd 16541 df-prm 16719 |
This theorem is referenced by: flt4lem5e 42611 |
Copyright terms: Public domain | W3C validator |