Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5d Structured version   Visualization version   GIF version

Theorem flt4lem5d 41860
Description: Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5d (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))

Proof of Theorem flt4lem5d
StepHypRef Expression
1 flt4lem5a.a . 2 (𝜑𝐴 ∈ ℕ)
21nnsqcld 14214 . . . 4 (𝜑 → (𝐴↑2) ∈ ℕ)
3 flt4lem5a.b . . . . 5 (𝜑𝐵 ∈ ℕ)
43nnsqcld 14214 . . . 4 (𝜑 → (𝐵↑2) ∈ ℕ)
5 flt4lem5a.c . . . 4 (𝜑𝐶 ∈ ℕ)
6 flt4lem5a.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝐴)
7 2prm 16636 . . . . . 6 2 ∈ ℙ
81nnzd 12592 . . . . . 6 (𝜑𝐴 ∈ ℤ)
9 prmdvdssq 16662 . . . . . 6 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
107, 8, 9sylancr 586 . . . . 5 (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
116, 10mtbid 324 . . . 4 (𝜑 → ¬ 2 ∥ (𝐴↑2))
12 flt4lem5a.2 . . . . 5 (𝜑 → (𝐴 gcd 𝐶) = 1)
13 2nn 12292 . . . . . . 7 2 ∈ ℕ
1413a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
15 rplpwr 16506 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
161, 5, 14, 15syl3anc 1370 . . . . 5 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
1712, 16mpd 15 . . . 4 (𝜑 → ((𝐴↑2) gcd 𝐶) = 1)
181nncnd 12235 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918flt4lem 41850 . . . . . 6 (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2))
203nncnd 12235 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2120flt4lem 41850 . . . . . 6 (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2))
2219, 21oveq12d 7430 . . . . 5 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2)))
23 flt4lem5a.3 . . . . 5 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
2422, 23eqtr3d 2773 . . . 4 (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2))
252, 4, 5, 11, 17, 24flt4lem1 41851 . . 3 (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))))
26 flt4lem5a.n . . . 4 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
2726pythagtriplem13 16767 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ)
2825, 27syl 17 . 2 (𝜑𝑁 ∈ ℕ)
29 flt4lem5a.m . . . 4 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
3029pythagtriplem11 16765 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ)
3125, 30syl 17 . 2 (𝜑𝑀 ∈ ℕ)
32 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
33 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
3429, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5a 41857 . 2 (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2))
3528nnzd 12592 . . . 4 (𝜑𝑁 ∈ ℤ)
368, 35gcdcomd 16462 . . 3 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
3731nnzd 12592 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3835, 37gcdcomd 16462 . . . . 5 (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
3929, 26flt4lem5 41855 . . . . . 6 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1)
4025, 39syl 17 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
4138, 40eqtrd 2771 . . . 4 (𝜑 → (𝑁 gcd 𝑀) = 1)
4228nnsqcld 14214 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℕ)
4342nncnd 12235 . . . . . 6 (𝜑 → (𝑁↑2) ∈ ℂ)
442nncnd 12235 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
4543, 44addcomd 11423 . . . . 5 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2)))
4645, 34eqtrd 2771 . . . 4 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2))
4728, 1, 31, 41, 46fltabcoprm 41847 . . 3 (𝜑 → (𝑁 gcd 𝐴) = 1)
4836, 47eqtrd 2771 . 2 (𝜑 → (𝐴 gcd 𝑁) = 1)
4932, 33pythagtriplem17 16771 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
501, 28, 31, 34, 48, 6, 49syl312anc 1390 1 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  w3a 1086   = wceq 1540  wcel 2105   class class class wbr 5148  cfv 6543  (class class class)co 7412  1c1 11117   + caddc 11119  cmin 11451   / cdiv 11878  cn 12219  2c2 12274  4c4 12276  cz 12565  cexp 14034  csqrt 15187  cdvds 16204   gcd cgcd 16442  cprime 16615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11172  ax-resscn 11173  ax-1cn 11174  ax-icn 11175  ax-addcl 11176  ax-addrcl 11177  ax-mulcl 11178  ax-mulrcl 11179  ax-mulcom 11180  ax-addass 11181  ax-mulass 11182  ax-distr 11183  ax-i2m1 11184  ax-1ne0 11185  ax-1rid 11186  ax-rnegex 11187  ax-rrecex 11188  ax-cnre 11189  ax-pre-lttri 11190  ax-pre-lttrn 11191  ax-pre-ltadd 11192  ax-pre-mulgt0 11193  ax-pre-sup 11194
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7368  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-1st 7979  df-2nd 7980  df-frecs 8272  df-wrecs 8303  df-recs 8377  df-rdg 8416  df-1o 8472  df-2o 8473  df-er 8709  df-en 8946  df-dom 8947  df-sdom 8948  df-fin 8949  df-sup 9443  df-inf 9444  df-pnf 11257  df-mnf 11258  df-xr 11259  df-ltxr 11260  df-le 11261  df-sub 11453  df-neg 11454  df-div 11879  df-nn 12220  df-2 12282  df-3 12283  df-4 12284  df-n0 12480  df-z 12566  df-uz 12830  df-rp 12982  df-fz 13492  df-fl 13764  df-mod 13842  df-seq 13974  df-exp 14035  df-cj 15053  df-re 15054  df-im 15055  df-sqrt 15189  df-abs 15190  df-dvds 16205  df-gcd 16443  df-prm 16616
This theorem is referenced by:  flt4lem5e  41861  flt4lem5f  41862
  Copyright terms: Public domain W3C validator