Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  flt4lem5d Structured version   Visualization version   GIF version

Theorem flt4lem5d 40979
Description: Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.)
Hypotheses
Ref Expression
flt4lem5a.m 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.n 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
flt4lem5a.r 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
flt4lem5a.s 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
flt4lem5a.a (𝜑𝐴 ∈ ℕ)
flt4lem5a.b (𝜑𝐵 ∈ ℕ)
flt4lem5a.c (𝜑𝐶 ∈ ℕ)
flt4lem5a.1 (𝜑 → ¬ 2 ∥ 𝐴)
flt4lem5a.2 (𝜑 → (𝐴 gcd 𝐶) = 1)
flt4lem5a.3 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
Assertion
Ref Expression
flt4lem5d (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))

Proof of Theorem flt4lem5d
StepHypRef Expression
1 flt4lem5a.a . 2 (𝜑𝐴 ∈ ℕ)
21nnsqcld 14147 . . . 4 (𝜑 → (𝐴↑2) ∈ ℕ)
3 flt4lem5a.b . . . . 5 (𝜑𝐵 ∈ ℕ)
43nnsqcld 14147 . . . 4 (𝜑 → (𝐵↑2) ∈ ℕ)
5 flt4lem5a.c . . . 4 (𝜑𝐶 ∈ ℕ)
6 flt4lem5a.1 . . . . 5 (𝜑 → ¬ 2 ∥ 𝐴)
7 2prm 16568 . . . . . 6 2 ∈ ℙ
81nnzd 12526 . . . . . 6 (𝜑𝐴 ∈ ℤ)
9 prmdvdssq 16594 . . . . . 6 ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
107, 8, 9sylancr 587 . . . . 5 (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2)))
116, 10mtbid 323 . . . 4 (𝜑 → ¬ 2 ∥ (𝐴↑2))
12 flt4lem5a.2 . . . . 5 (𝜑 → (𝐴 gcd 𝐶) = 1)
13 2nn 12226 . . . . . . 7 2 ∈ ℕ
1413a1i 11 . . . . . 6 (𝜑 → 2 ∈ ℕ)
15 rplpwr 16438 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
161, 5, 14, 15syl3anc 1371 . . . . 5 (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1))
1712, 16mpd 15 . . . 4 (𝜑 → ((𝐴↑2) gcd 𝐶) = 1)
181nncnd 12169 . . . . . . 7 (𝜑𝐴 ∈ ℂ)
1918flt4lem 40969 . . . . . 6 (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2))
203nncnd 12169 . . . . . . 7 (𝜑𝐵 ∈ ℂ)
2120flt4lem 40969 . . . . . 6 (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2))
2219, 21oveq12d 7375 . . . . 5 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2)))
23 flt4lem5a.3 . . . . 5 (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2))
2422, 23eqtr3d 2778 . . . 4 (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2))
252, 4, 5, 11, 17, 24flt4lem1 40970 . . 3 (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))))
26 flt4lem5a.n . . . 4 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2)
2726pythagtriplem13 16699 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ)
2825, 27syl 17 . 2 (𝜑𝑁 ∈ ℕ)
29 flt4lem5a.m . . . 4 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2)
3029pythagtriplem11 16697 . . 3 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ)
3125, 30syl 17 . 2 (𝜑𝑀 ∈ ℕ)
32 flt4lem5a.r . . 3 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀𝑁))) / 2)
33 flt4lem5a.s . . 3 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀𝑁))) / 2)
3429, 26, 32, 33, 1, 3, 5, 6, 12, 23flt4lem5a 40976 . 2 (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2))
3528nnzd 12526 . . . 4 (𝜑𝑁 ∈ ℤ)
368, 35gcdcomd 16394 . . 3 (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴))
3731nnzd 12526 . . . . . 6 (𝜑𝑀 ∈ ℤ)
3835, 37gcdcomd 16394 . . . . 5 (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
3929, 26flt4lem5 40974 . . . . . 6 ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1)
4025, 39syl 17 . . . . 5 (𝜑 → (𝑀 gcd 𝑁) = 1)
4138, 40eqtrd 2776 . . . 4 (𝜑 → (𝑁 gcd 𝑀) = 1)
4228nnsqcld 14147 . . . . . . 7 (𝜑 → (𝑁↑2) ∈ ℕ)
4342nncnd 12169 . . . . . 6 (𝜑 → (𝑁↑2) ∈ ℂ)
442nncnd 12169 . . . . . 6 (𝜑 → (𝐴↑2) ∈ ℂ)
4543, 44addcomd 11357 . . . . 5 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2)))
4645, 34eqtrd 2776 . . . 4 (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2))
4728, 1, 31, 41, 46fltabcoprm 40966 . . 3 (𝜑 → (𝑁 gcd 𝐴) = 1)
4836, 47eqtrd 2776 . 2 (𝜑 → (𝐴 gcd 𝑁) = 1)
4932, 33pythagtriplem17 16703 . 2 (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 = ((𝑅↑2) + (𝑆↑2)))
501, 28, 31, 34, 48, 6, 49syl312anc 1391 1 (𝜑𝑀 = ((𝑅↑2) + (𝑆↑2)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106   class class class wbr 5105  cfv 6496  (class class class)co 7357  1c1 11052   + caddc 11054  cmin 11385   / cdiv 11812  cn 12153  2c2 12208  4c4 12210  cz 12499  cexp 13967  csqrt 15118  cdvds 16136   gcd cgcd 16374  cprime 16547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-fz 13425  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-dvds 16137  df-gcd 16375  df-prm 16548
This theorem is referenced by:  flt4lem5e  40980  flt4lem5f  40981
  Copyright terms: Public domain W3C validator