![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > flt4lem5d | Structured version Visualization version GIF version |
Description: Part 3 of Equation 2 of https://crypto.stanford.edu/pbc/notes/numberfield/fermatn4.html. (Contributed by SN, 23-Aug-2024.) |
Ref | Expression |
---|---|
flt4lem5a.m | ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.n | ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) |
flt4lem5a.r | ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.s | ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) |
flt4lem5a.a | ⊢ (𝜑 → 𝐴 ∈ ℕ) |
flt4lem5a.b | ⊢ (𝜑 → 𝐵 ∈ ℕ) |
flt4lem5a.c | ⊢ (𝜑 → 𝐶 ∈ ℕ) |
flt4lem5a.1 | ⊢ (𝜑 → ¬ 2 ∥ 𝐴) |
flt4lem5a.2 | ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) |
flt4lem5a.3 | ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) |
Ref | Expression |
---|---|
flt4lem5d | ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | flt4lem5a.a | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ) | |
2 | 1 | nnsqcld 14147 | . . . 4 ⊢ (𝜑 → (𝐴↑2) ∈ ℕ) |
3 | flt4lem5a.b | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ ℕ) | |
4 | 3 | nnsqcld 14147 | . . . 4 ⊢ (𝜑 → (𝐵↑2) ∈ ℕ) |
5 | flt4lem5a.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ ℕ) | |
6 | flt4lem5a.1 | . . . . 5 ⊢ (𝜑 → ¬ 2 ∥ 𝐴) | |
7 | 2prm 16568 | . . . . . 6 ⊢ 2 ∈ ℙ | |
8 | 1 | nnzd 12526 | . . . . . 6 ⊢ (𝜑 → 𝐴 ∈ ℤ) |
9 | prmdvdssq 16594 | . . . . . 6 ⊢ ((2 ∈ ℙ ∧ 𝐴 ∈ ℤ) → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) | |
10 | 7, 8, 9 | sylancr 587 | . . . . 5 ⊢ (𝜑 → (2 ∥ 𝐴 ↔ 2 ∥ (𝐴↑2))) |
11 | 6, 10 | mtbid 323 | . . . 4 ⊢ (𝜑 → ¬ 2 ∥ (𝐴↑2)) |
12 | flt4lem5a.2 | . . . . 5 ⊢ (𝜑 → (𝐴 gcd 𝐶) = 1) | |
13 | 2nn 12226 | . . . . . . 7 ⊢ 2 ∈ ℕ | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 2 ∈ ℕ) |
15 | rplpwr 16438 | . . . . . 6 ⊢ ((𝐴 ∈ ℕ ∧ 𝐶 ∈ ℕ ∧ 2 ∈ ℕ) → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) | |
16 | 1, 5, 14, 15 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → ((𝐴 gcd 𝐶) = 1 → ((𝐴↑2) gcd 𝐶) = 1)) |
17 | 12, 16 | mpd 15 | . . . 4 ⊢ (𝜑 → ((𝐴↑2) gcd 𝐶) = 1) |
18 | 1 | nncnd 12169 | . . . . . . 7 ⊢ (𝜑 → 𝐴 ∈ ℂ) |
19 | 18 | flt4lem 40969 | . . . . . 6 ⊢ (𝜑 → (𝐴↑4) = ((𝐴↑2)↑2)) |
20 | 3 | nncnd 12169 | . . . . . . 7 ⊢ (𝜑 → 𝐵 ∈ ℂ) |
21 | 20 | flt4lem 40969 | . . . . . 6 ⊢ (𝜑 → (𝐵↑4) = ((𝐵↑2)↑2)) |
22 | 19, 21 | oveq12d 7375 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (((𝐴↑2)↑2) + ((𝐵↑2)↑2))) |
23 | flt4lem5a.3 | . . . . 5 ⊢ (𝜑 → ((𝐴↑4) + (𝐵↑4)) = (𝐶↑2)) | |
24 | 22, 23 | eqtr3d 2778 | . . . 4 ⊢ (𝜑 → (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2)) |
25 | 2, 4, 5, 11, 17, 24 | flt4lem1 40970 | . . 3 ⊢ (𝜑 → (((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2)))) |
26 | flt4lem5a.n | . . . 4 ⊢ 𝑁 = (((√‘(𝐶 + (𝐵↑2))) − (√‘(𝐶 − (𝐵↑2)))) / 2) | |
27 | 26 | pythagtriplem13 16699 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑁 ∈ ℕ) |
28 | 25, 27 | syl 17 | . 2 ⊢ (𝜑 → 𝑁 ∈ ℕ) |
29 | flt4lem5a.m | . . . 4 ⊢ 𝑀 = (((√‘(𝐶 + (𝐵↑2))) + (√‘(𝐶 − (𝐵↑2)))) / 2) | |
30 | 29 | pythagtriplem11 16697 | . . 3 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → 𝑀 ∈ ℕ) |
31 | 25, 30 | syl 17 | . 2 ⊢ (𝜑 → 𝑀 ∈ ℕ) |
32 | flt4lem5a.r | . . 3 ⊢ 𝑅 = (((√‘(𝑀 + 𝑁)) + (√‘(𝑀 − 𝑁))) / 2) | |
33 | flt4lem5a.s | . . 3 ⊢ 𝑆 = (((√‘(𝑀 + 𝑁)) − (√‘(𝑀 − 𝑁))) / 2) | |
34 | 29, 26, 32, 33, 1, 3, 5, 6, 12, 23 | flt4lem5a 40976 | . 2 ⊢ (𝜑 → ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2)) |
35 | 28 | nnzd 12526 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
36 | 8, 35 | gcdcomd 16394 | . . 3 ⊢ (𝜑 → (𝐴 gcd 𝑁) = (𝑁 gcd 𝐴)) |
37 | 31 | nnzd 12526 | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ ℤ) |
38 | 35, 37 | gcdcomd 16394 | . . . . 5 ⊢ (𝜑 → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁)) |
39 | 29, 26 | flt4lem5 40974 | . . . . . 6 ⊢ ((((𝐴↑2) ∈ ℕ ∧ (𝐵↑2) ∈ ℕ ∧ 𝐶 ∈ ℕ) ∧ (((𝐴↑2)↑2) + ((𝐵↑2)↑2)) = (𝐶↑2) ∧ (((𝐴↑2) gcd (𝐵↑2)) = 1 ∧ ¬ 2 ∥ (𝐴↑2))) → (𝑀 gcd 𝑁) = 1) |
40 | 25, 39 | syl 17 | . . . . 5 ⊢ (𝜑 → (𝑀 gcd 𝑁) = 1) |
41 | 38, 40 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → (𝑁 gcd 𝑀) = 1) |
42 | 28 | nnsqcld 14147 | . . . . . . 7 ⊢ (𝜑 → (𝑁↑2) ∈ ℕ) |
43 | 42 | nncnd 12169 | . . . . . 6 ⊢ (𝜑 → (𝑁↑2) ∈ ℂ) |
44 | 2 | nncnd 12169 | . . . . . 6 ⊢ (𝜑 → (𝐴↑2) ∈ ℂ) |
45 | 43, 44 | addcomd 11357 | . . . . 5 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = ((𝐴↑2) + (𝑁↑2))) |
46 | 45, 34 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → ((𝑁↑2) + (𝐴↑2)) = (𝑀↑2)) |
47 | 28, 1, 31, 41, 46 | fltabcoprm 40966 | . . 3 ⊢ (𝜑 → (𝑁 gcd 𝐴) = 1) |
48 | 36, 47 | eqtrd 2776 | . 2 ⊢ (𝜑 → (𝐴 gcd 𝑁) = 1) |
49 | 32, 33 | pythagtriplem17 16703 | . 2 ⊢ (((𝐴 ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℕ) ∧ ((𝐴↑2) + (𝑁↑2)) = (𝑀↑2) ∧ ((𝐴 gcd 𝑁) = 1 ∧ ¬ 2 ∥ 𝐴)) → 𝑀 = ((𝑅↑2) + (𝑆↑2))) |
50 | 1, 28, 31, 34, 48, 6, 49 | syl312anc 1391 | 1 ⊢ (𝜑 → 𝑀 = ((𝑅↑2) + (𝑆↑2))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 = wceq 1541 ∈ wcel 2106 class class class wbr 5105 ‘cfv 6496 (class class class)co 7357 1c1 11052 + caddc 11054 − cmin 11385 / cdiv 11812 ℕcn 12153 2c2 12208 4c4 12210 ℤcz 12499 ↑cexp 13967 √csqrt 15118 ∥ cdvds 16136 gcd cgcd 16374 ℙcprime 16547 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-er 8648 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-n0 12414 df-z 12500 df-uz 12764 df-rp 12916 df-fz 13425 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-dvds 16137 df-gcd 16375 df-prm 16548 |
This theorem is referenced by: flt4lem5e 40980 flt4lem5f 40981 |
Copyright terms: Public domain | W3C validator |