Proof of Theorem cdlemk45
Step | Hyp | Ref
| Expression |
1 | | simp11 1202 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp12 1203 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵))) |
3 | | simp13l 1287 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → 𝐺 ∈ 𝑇) |
4 | | simp31 1208 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → 𝐼 ∈ 𝑇) |
5 | | cdlemk5.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
6 | | cdlemk5.t |
. . . . . 6
⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
7 | 5, 6 | ltrnco 38733 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇 ∧ 𝐼 ∈ 𝑇) → (𝐺 ∘ 𝐼) ∈ 𝑇) |
8 | 1, 3, 4, 7 | syl3anc 1370 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝐺 ∘ 𝐼) ∈ 𝑇) |
9 | | simp33 1210 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵)) |
10 | 8, 9 | jca 512 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) |
11 | | simp2 1136 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁))) |
12 | | simp32 1209 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → 𝐼 ≠ ( I ↾ 𝐵)) |
13 | | cdlemk5.b |
. . . 4
⊢ 𝐵 = (Base‘𝐾) |
14 | | cdlemk5.l |
. . . 4
⊢ ≤ =
(le‘𝐾) |
15 | | cdlemk5.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
16 | | cdlemk5.m |
. . . 4
⊢ ∧ =
(meet‘𝐾) |
17 | | cdlemk5.a |
. . . 4
⊢ 𝐴 = (Atoms‘𝐾) |
18 | | cdlemk5.r |
. . . 4
⊢ 𝑅 = ((trL‘𝐾)‘𝑊) |
19 | | cdlemk5.z |
. . . 4
⊢ 𝑍 = ((𝑃 ∨ (𝑅‘𝑏)) ∧ ((𝑁‘𝑃) ∨ (𝑅‘(𝑏 ∘ ◡𝐹)))) |
20 | | cdlemk5.y |
. . . 4
⊢ 𝑌 = ((𝑃 ∨ (𝑅‘𝑔)) ∧ (𝑍 ∨ (𝑅‘(𝑔 ∘ ◡𝑏)))) |
21 | | cdlemk5.x |
. . . 4
⊢ 𝑋 = (℩𝑧 ∈ 𝑇 ∀𝑏 ∈ 𝑇 ((𝑏 ≠ ( I ↾ 𝐵) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝐹) ∧ (𝑅‘𝑏) ≠ (𝑅‘𝑔)) → (𝑧‘𝑃) = 𝑌)) |
22 | 13, 14, 15, 16, 17, 5, 6, 18, 19, 20, 21 | cdlemk11t 38960 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ ((𝐺 ∘ 𝐼) ∈ 𝑇 ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡(𝐺 ∘ 𝐼))))) |
23 | 1, 2, 10, 11, 4, 12, 22 | syl312anc 1390 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡(𝐺 ∘ 𝐼))))) |
24 | | cnvco 5794 |
. . . . . . . 8
⊢ ◡(𝐺 ∘ 𝐼) = (◡𝐼 ∘ ◡𝐺) |
25 | 24 | coeq2i 5769 |
. . . . . . 7
⊢ (𝐼 ∘ ◡(𝐺 ∘ 𝐼)) = (𝐼 ∘ (◡𝐼 ∘ ◡𝐺)) |
26 | | coass 6169 |
. . . . . . 7
⊢ ((𝐼 ∘ ◡𝐼) ∘ ◡𝐺) = (𝐼 ∘ (◡𝐼 ∘ ◡𝐺)) |
27 | 25, 26 | eqtr4i 2769 |
. . . . . 6
⊢ (𝐼 ∘ ◡(𝐺 ∘ 𝐼)) = ((𝐼 ∘ ◡𝐼) ∘ ◡𝐺) |
28 | 13, 5, 6 | ltrn1o 38138 |
. . . . . . . . . 10
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐼 ∈ 𝑇) → 𝐼:𝐵–1-1-onto→𝐵) |
29 | 1, 4, 28 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → 𝐼:𝐵–1-1-onto→𝐵) |
30 | | f1ococnv2 6743 |
. . . . . . . . 9
⊢ (𝐼:𝐵–1-1-onto→𝐵 → (𝐼 ∘ ◡𝐼) = ( I ↾ 𝐵)) |
31 | 29, 30 | syl 17 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝐼 ∘ ◡𝐼) = ( I ↾ 𝐵)) |
32 | 31 | coeq1d 5770 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → ((𝐼 ∘ ◡𝐼) ∘ ◡𝐺) = (( I ↾ 𝐵) ∘ ◡𝐺)) |
33 | 13, 5, 6 | ltrn1o 38138 |
. . . . . . . . 9
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → 𝐺:𝐵–1-1-onto→𝐵) |
34 | 1, 3, 33 | syl2anc 584 |
. . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → 𝐺:𝐵–1-1-onto→𝐵) |
35 | | f1ocnv 6728 |
. . . . . . . 8
⊢ (𝐺:𝐵–1-1-onto→𝐵 → ◡𝐺:𝐵–1-1-onto→𝐵) |
36 | | f1of 6716 |
. . . . . . . 8
⊢ (◡𝐺:𝐵–1-1-onto→𝐵 → ◡𝐺:𝐵⟶𝐵) |
37 | | fcoi2 6649 |
. . . . . . . 8
⊢ (◡𝐺:𝐵⟶𝐵 → (( I ↾ 𝐵) ∘ ◡𝐺) = ◡𝐺) |
38 | 34, 35, 36, 37 | 4syl 19 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (( I ↾ 𝐵) ∘ ◡𝐺) = ◡𝐺) |
39 | 32, 38 | eqtrd 2778 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → ((𝐼 ∘ ◡𝐼) ∘ ◡𝐺) = ◡𝐺) |
40 | 27, 39 | eqtrid 2790 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝐼 ∘ ◡(𝐺 ∘ 𝐼)) = ◡𝐺) |
41 | 40 | fveq2d 6778 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝐼 ∘ ◡(𝐺 ∘ 𝐼))) = (𝑅‘◡𝐺)) |
42 | 5, 6, 18 | trlcnv 38179 |
. . . . 5
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝐺 ∈ 𝑇) → (𝑅‘◡𝐺) = (𝑅‘𝐺)) |
43 | 1, 3, 42 | syl2anc 584 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝑅‘◡𝐺) = (𝑅‘𝐺)) |
44 | 41, 43 | eqtrd 2778 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (𝑅‘(𝐼 ∘ ◡(𝐺 ∘ 𝐼))) = (𝑅‘𝐺)) |
45 | 44 | oveq2d 7291 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘(𝐼 ∘ ◡(𝐺 ∘ 𝐼)))) = ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |
46 | 23, 45 | breqtrd 5100 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝐹 ∈ 𝑇 ∧ 𝐹 ≠ ( I ↾ 𝐵)) ∧ (𝐺 ∈ 𝑇 ∧ 𝐺 ≠ ( I ↾ 𝐵))) ∧ (𝑁 ∈ 𝑇 ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑅‘𝐹) = (𝑅‘𝑁)) ∧ (𝐼 ∈ 𝑇 ∧ 𝐼 ≠ ( I ↾ 𝐵) ∧ (𝐺 ∘ 𝐼) ≠ ( I ↾ 𝐵))) → (⦋(𝐺 ∘ 𝐼) / 𝑔⦌𝑋‘𝑃) ≤ ((⦋𝐼 / 𝑔⦌𝑋‘𝑃) ∨ (𝑅‘𝐺))) |