MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmex Structured version   Visualization version   GIF version

Theorem f1dmex 7892
Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5218. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem f1dmex
StepHypRef Expression
1 f1f 6720 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6660 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 ssexg 5262 . . . . 5 ((ran 𝐹𝐵𝐵𝐶) → ran 𝐹 ∈ V)
42, 3sylan 580 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → ran 𝐹 ∈ V)
54ex 412 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵𝐶 → ran 𝐹 ∈ V))
6 f1cnv 6788 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
7 f1ofo 6771 . . . 4 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
86, 7syl 17 . . 3 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹onto𝐴)
9 focdmex 7891 . . 3 (ran 𝐹 ∈ V → (𝐹:ran 𝐹onto𝐴𝐴 ∈ V))
105, 8, 9syl6ci 71 . 2 (𝐹:𝐴1-1𝐵 → (𝐵𝐶𝐴 ∈ V))
1110imp 406 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3436  wss 3903  ccnv 5618  ran crn 5620  1-1wf1 6479  ontowfo 6480  1-1-ontowf1o 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490
This theorem is referenced by:  f1ovv  7893  f1domg  8897  ordtypelem10  9419  oiexg  9427  inf3lem7  9530  pwfseqlem4  10556  pwfseqlem5  10557  grothomex  10723  gsumzf1o  19791  dprdf1o  19913  f1lindf  21729  tsmsf1o  24030  onvf1od  35100  diophrw  42752
  Copyright terms: Public domain W3C validator