MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmex Structured version   Visualization version   GIF version

Theorem f1dmex 7650
Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5181. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem f1dmex
StepHypRef Expression
1 f1f 6568 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6514 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 ssexg 5218 . . . . 5 ((ran 𝐹𝐵𝐵𝐶) → ran 𝐹 ∈ V)
42, 3sylan 582 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → ran 𝐹 ∈ V)
54ex 415 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵𝐶 → ran 𝐹 ∈ V))
6 f1cnv 6631 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
7 f1ofo 6615 . . . 4 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
86, 7syl 17 . . 3 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹onto𝐴)
9 fornex 7649 . . 3 (ran 𝐹 ∈ V → (𝐹:ran 𝐹onto𝐴𝐴 ∈ V))
105, 8, 9syl6ci 71 . 2 (𝐹:𝐴1-1𝐵 → (𝐵𝐶𝐴 ∈ V))
1110imp 409 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wcel 2108  Vcvv 3493  wss 3934  ccnv 5547  ran crn 5549  1-1wf1 6345  ontowfo 6346  1-1-ontowf1o 6347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356
This theorem is referenced by:  f1ovv  7651  f1domg  8521  ordtypelem10  8983  oiexg  8991  inf3lem7  9089  pwfseqlem4  10076  pwfseqlem5  10077  grothomex  10243  gsumzf1o  19024  dprdf1o  19146  f1lindf  20958  tsmsf1o  22745  diophrw  39346
  Copyright terms: Public domain W3C validator