MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmex Structured version   Visualization version   GIF version

Theorem f1dmex 7915
Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5229. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem f1dmex
StepHypRef Expression
1 f1f 6738 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6678 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 ssexg 5273 . . . . 5 ((ran 𝐹𝐵𝐵𝐶) → ran 𝐹 ∈ V)
42, 3sylan 580 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → ran 𝐹 ∈ V)
54ex 412 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵𝐶 → ran 𝐹 ∈ V))
6 f1cnv 6806 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
7 f1ofo 6789 . . . 4 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
86, 7syl 17 . . 3 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹onto𝐴)
9 focdmex 7914 . . 3 (ran 𝐹 ∈ V → (𝐹:ran 𝐹onto𝐴𝐴 ∈ V))
105, 8, 9syl6ci 71 . 2 (𝐹:𝐴1-1𝐵 → (𝐵𝐶𝐴 ∈ V))
1110imp 406 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3444  wss 3911  ccnv 5630  ran crn 5632  1-1wf1 6496  ontowfo 6497  1-1-ontowf1o 6498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  f1ovv  7916  f1domg  8920  ordtypelem10  9456  oiexg  9464  inf3lem7  9563  pwfseqlem4  10591  pwfseqlem5  10592  grothomex  10758  gsumzf1o  19826  dprdf1o  19948  f1lindf  21764  tsmsf1o  24065  onvf1od  35087  diophrw  42740
  Copyright terms: Public domain W3C validator