| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1dmex | Structured version Visualization version GIF version | ||
| Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5279. (Contributed by NM, 4-Sep-2004.) |
| Ref | Expression |
|---|---|
| f1dmex | ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1f 6804 | . . . . . 6 ⊢ (𝐹:𝐴–1-1→𝐵 → 𝐹:𝐴⟶𝐵) | |
| 2 | 1 | frnd 6744 | . . . . 5 ⊢ (𝐹:𝐴–1-1→𝐵 → ran 𝐹 ⊆ 𝐵) |
| 3 | ssexg 5323 | . . . . 5 ⊢ ((ran 𝐹 ⊆ 𝐵 ∧ 𝐵 ∈ 𝐶) → ran 𝐹 ∈ V) | |
| 4 | 2, 3 | sylan 580 | . . . 4 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → ran 𝐹 ∈ V) |
| 5 | 4 | ex 412 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ 𝐶 → ran 𝐹 ∈ V)) |
| 6 | f1cnv 6872 | . . . 4 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–1-1-onto→𝐴) | |
| 7 | f1ofo 6855 | . . . 4 ⊢ (◡𝐹:ran 𝐹–1-1-onto→𝐴 → ◡𝐹:ran 𝐹–onto→𝐴) | |
| 8 | 6, 7 | syl 17 | . . 3 ⊢ (𝐹:𝐴–1-1→𝐵 → ◡𝐹:ran 𝐹–onto→𝐴) |
| 9 | focdmex 7980 | . . 3 ⊢ (ran 𝐹 ∈ V → (◡𝐹:ran 𝐹–onto→𝐴 → 𝐴 ∈ V)) | |
| 10 | 5, 8, 9 | syl6ci 71 | . 2 ⊢ (𝐹:𝐴–1-1→𝐵 → (𝐵 ∈ 𝐶 → 𝐴 ∈ V)) |
| 11 | 10 | imp 406 | 1 ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐵 ∈ 𝐶) → 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Vcvv 3480 ⊆ wss 3951 ◡ccnv 5684 ran crn 5686 –1-1→wf1 6558 –onto→wfo 6559 –1-1-onto→wf1o 6560 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 |
| This theorem is referenced by: f1ovv 7982 f1domg 9012 ordtypelem10 9567 oiexg 9575 inf3lem7 9674 pwfseqlem4 10702 pwfseqlem5 10703 grothomex 10869 gsumzf1o 19930 dprdf1o 20052 f1lindf 21842 tsmsf1o 24153 diophrw 42770 |
| Copyright terms: Public domain | W3C validator |