MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1dmex Structured version   Visualization version   GIF version

Theorem f1dmex 7791
Description: If the codomain of a one-to-one function exists, so does its domain. This theorem is equivalent to the Axiom of Replacement ax-rep 5214. (Contributed by NM, 4-Sep-2004.)
Assertion
Ref Expression
f1dmex ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)

Proof of Theorem f1dmex
StepHypRef Expression
1 f1f 6667 . . . . . 6 (𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
21frnd 6605 . . . . 5 (𝐹:𝐴1-1𝐵 → ran 𝐹𝐵)
3 ssexg 5251 . . . . 5 ((ran 𝐹𝐵𝐵𝐶) → ran 𝐹 ∈ V)
42, 3sylan 580 . . . 4 ((𝐹:𝐴1-1𝐵𝐵𝐶) → ran 𝐹 ∈ V)
54ex 413 . . 3 (𝐹:𝐴1-1𝐵 → (𝐵𝐶 → ran 𝐹 ∈ V))
6 f1cnv 6736 . . . 4 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹1-1-onto𝐴)
7 f1ofo 6720 . . . 4 (𝐹:ran 𝐹1-1-onto𝐴𝐹:ran 𝐹onto𝐴)
86, 7syl 17 . . 3 (𝐹:𝐴1-1𝐵𝐹:ran 𝐹onto𝐴)
9 fornex 7790 . . 3 (ran 𝐹 ∈ V → (𝐹:ran 𝐹onto𝐴𝐴 ∈ V))
105, 8, 9syl6ci 71 . 2 (𝐹:𝐴1-1𝐵 → (𝐵𝐶𝐴 ∈ V))
1110imp 407 1 ((𝐹:𝐴1-1𝐵𝐵𝐶) → 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2110  Vcvv 3431  wss 3892  ccnv 5588  ran crn 5590  1-1wf1 6428  ontowfo 6429  1-1-ontowf1o 6430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-reu 3073  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-iun 4932  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6389  df-fun 6433  df-fn 6434  df-f 6435  df-f1 6436  df-fo 6437  df-f1o 6438  df-fv 6439
This theorem is referenced by:  f1ovv  7792  f1domg  8741  ordtypelem10  9262  oiexg  9270  inf3lem7  9368  pwfseqlem4  10417  pwfseqlem5  10418  grothomex  10584  gsumzf1o  19509  dprdf1o  19631  f1lindf  21025  tsmsf1o  23292  diophrw  40576
  Copyright terms: Public domain W3C validator