![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumrpcl | Structured version Visualization version GIF version |
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumrpcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumrpcl.2 | ⊢ 𝑊 = (ℤ≥‘𝑁) |
isumrpcl.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
isumrpcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumrpcl.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) |
isumrpcl.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumrpcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrpcl.2 | . . 3 ⊢ 𝑊 = (ℤ≥‘𝑁) | |
2 | isumrpcl.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | isumrpcl.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2839 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 12857 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | uzss 12870 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 1, 3 | 3sstr4g 4024 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
10 | 9 | sselda 3979 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
11 | isumrpcl.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
12 | 10, 11 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) = 𝐴) |
13 | isumrpcl.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) | |
14 | 13 | rpred 13043 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
15 | 10, 14 | syldan 590 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℝ) |
16 | isumrpcl.6 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
17 | 11, 13 | eqeltrd 2829 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ+) |
18 | 17 | rpcnd 13045 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
19 | 3, 2, 18 | iserex 15630 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
20 | 16, 19 | mpbid 231 | . . 3 ⊢ (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
21 | 1, 6, 12, 15, 20 | isumrecl 15738 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ) |
22 | fveq2 6892 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
23 | 22 | eleq1d 2814 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑁) ∈ ℝ+)) |
24 | 17 | ralrimiva 3142 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+) |
25 | 23, 24, 2 | rspcdva 3609 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
26 | seq1 14006 | . . . 4 ⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) | |
27 | 6, 26 | syl 17 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
28 | uzid 12862 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
29 | 6, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
30 | 29, 1 | eleqtrrdi 2840 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
31 | 15 | recnd 11267 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℂ) |
32 | 1, 6, 12, 31, 20 | isumclim2 15731 | . . . 4 ⊢ (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑊 𝐴) |
33 | 9 | sseld 3978 | . . . . . . 7 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍)) |
34 | fveq2 6892 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
35 | 34 | eleq1d 2814 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑚) ∈ ℝ+)) |
36 | 35 | rspcv 3604 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+ → (𝐹‘𝑚) ∈ ℝ+)) |
37 | 33, 24, 36 | syl6ci 71 | . . . . . 6 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → (𝐹‘𝑚) ∈ ℝ+)) |
38 | 37 | imp 406 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ+) |
39 | 38 | rpred 13043 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ) |
40 | 38 | rpge0d 13047 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 0 ≤ (𝐹‘𝑚)) |
41 | 1, 30, 32, 39, 40 | climserle 15636 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
42 | 27, 41 | eqbrtrrd 5167 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
43 | 21, 25, 42 | rpgecld 13082 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∀wral 3057 ⊆ wss 3945 dom cdm 5673 ‘cfv 6543 ℝcr 11132 + caddc 11136 ≤ cle 11274 ℤcz 12583 ℤ≥cuz 12847 ℝ+crp 13001 seqcseq 13993 ⇝ cli 15455 Σcsu 15659 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-inf2 9659 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 ax-pre-sup 11211 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-sup 9460 df-inf 9461 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-2 12300 df-3 12301 df-n0 12498 df-z 12584 df-uz 12848 df-rp 13002 df-fz 13512 df-fzo 13655 df-fl 13784 df-seq 13994 df-exp 14054 df-hash 14317 df-cj 15073 df-re 15074 df-im 15075 df-sqrt 15209 df-abs 15210 df-clim 15459 df-rlim 15460 df-sum 15660 |
This theorem is referenced by: effsumlt 16082 eirrlem 16175 aaliou3lem3 26273 |
Copyright terms: Public domain | W3C validator |