![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isumrpcl | Structured version Visualization version GIF version |
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.) |
Ref | Expression |
---|---|
isumrpcl.1 | ⊢ 𝑍 = (ℤ≥‘𝑀) |
isumrpcl.2 | ⊢ 𝑊 = (ℤ≥‘𝑁) |
isumrpcl.3 | ⊢ (𝜑 → 𝑁 ∈ 𝑍) |
isumrpcl.4 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) |
isumrpcl.5 | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) |
isumrpcl.6 | ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) |
Ref | Expression |
---|---|
isumrpcl | ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isumrpcl.2 | . . 3 ⊢ 𝑊 = (ℤ≥‘𝑁) | |
2 | isumrpcl.3 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ 𝑍) | |
3 | isumrpcl.1 | . . . . 5 ⊢ 𝑍 = (ℤ≥‘𝑀) | |
4 | 2, 3 | eleqtrdi 2835 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑀)) |
5 | eluzelz 12860 | . . . 4 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → 𝑁 ∈ ℤ) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℤ) |
7 | uzss 12873 | . . . . . . 7 ⊢ (𝑁 ∈ (ℤ≥‘𝑀) → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) | |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → (ℤ≥‘𝑁) ⊆ (ℤ≥‘𝑀)) |
9 | 8, 1, 3 | 3sstr4g 4017 | . . . . 5 ⊢ (𝜑 → 𝑊 ⊆ 𝑍) |
10 | 9 | sselda 3972 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝑘 ∈ 𝑍) |
11 | isumrpcl.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = 𝐴) | |
12 | 10, 11 | syldan 589 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → (𝐹‘𝑘) = 𝐴) |
13 | isumrpcl.5 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ+) | |
14 | 13 | rpred 13046 | . . . 4 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → 𝐴 ∈ ℝ) |
15 | 10, 14 | syldan 589 | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℝ) |
16 | isumrpcl.6 | . . . 4 ⊢ (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ ) | |
17 | 11, 13 | eqeltrd 2825 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℝ+) |
18 | 17 | rpcnd 13048 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ ℂ) |
19 | 3, 2, 18 | iserex 15633 | . . . 4 ⊢ (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ )) |
20 | 16, 19 | mpbid 231 | . . 3 ⊢ (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ ) |
21 | 1, 6, 12, 15, 20 | isumrecl 15741 | . 2 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ) |
22 | fveq2 6890 | . . . 4 ⊢ (𝑘 = 𝑁 → (𝐹‘𝑘) = (𝐹‘𝑁)) | |
23 | 22 | eleq1d 2810 | . . 3 ⊢ (𝑘 = 𝑁 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑁) ∈ ℝ+)) |
24 | 17 | ralrimiva 3136 | . . 3 ⊢ (𝜑 → ∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+) |
25 | 23, 24, 2 | rspcdva 3602 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ∈ ℝ+) |
26 | seq1 14009 | . . . 4 ⊢ (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) | |
27 | 6, 26 | syl 17 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹‘𝑁)) |
28 | uzid 12865 | . . . . . 6 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ≥‘𝑁)) | |
29 | 6, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑁 ∈ (ℤ≥‘𝑁)) |
30 | 29, 1 | eleqtrrdi 2836 | . . . 4 ⊢ (𝜑 → 𝑁 ∈ 𝑊) |
31 | 15 | recnd 11270 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑊) → 𝐴 ∈ ℂ) |
32 | 1, 6, 12, 31, 20 | isumclim2 15734 | . . . 4 ⊢ (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘 ∈ 𝑊 𝐴) |
33 | 9 | sseld 3971 | . . . . . . 7 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → 𝑚 ∈ 𝑍)) |
34 | fveq2 6890 | . . . . . . . . 9 ⊢ (𝑘 = 𝑚 → (𝐹‘𝑘) = (𝐹‘𝑚)) | |
35 | 34 | eleq1d 2810 | . . . . . . . 8 ⊢ (𝑘 = 𝑚 → ((𝐹‘𝑘) ∈ ℝ+ ↔ (𝐹‘𝑚) ∈ ℝ+)) |
36 | 35 | rspcv 3597 | . . . . . . 7 ⊢ (𝑚 ∈ 𝑍 → (∀𝑘 ∈ 𝑍 (𝐹‘𝑘) ∈ ℝ+ → (𝐹‘𝑚) ∈ ℝ+)) |
37 | 33, 24, 36 | syl6ci 71 | . . . . . 6 ⊢ (𝜑 → (𝑚 ∈ 𝑊 → (𝐹‘𝑚) ∈ ℝ+)) |
38 | 37 | imp 405 | . . . . 5 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ+) |
39 | 38 | rpred 13046 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → (𝐹‘𝑚) ∈ ℝ) |
40 | 38 | rpge0d 13050 | . . . 4 ⊢ ((𝜑 ∧ 𝑚 ∈ 𝑊) → 0 ≤ (𝐹‘𝑚)) |
41 | 1, 30, 32, 39, 40 | climserle 15639 | . . 3 ⊢ (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
42 | 27, 41 | eqbrtrrd 5165 | . 2 ⊢ (𝜑 → (𝐹‘𝑁) ≤ Σ𝑘 ∈ 𝑊 𝐴) |
43 | 21, 25, 42 | rpgecld 13085 | 1 ⊢ (𝜑 → Σ𝑘 ∈ 𝑊 𝐴 ∈ ℝ+) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3051 ⊆ wss 3939 dom cdm 5670 ‘cfv 6541 ℝcr 11135 + caddc 11139 ≤ cle 11277 ℤcz 12586 ℤ≥cuz 12850 ℝ+crp 13004 seqcseq 13996 ⇝ cli 15458 Σcsu 15662 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5357 ax-pr 5421 ax-un 7736 ax-inf2 9662 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 ax-pre-sup 11214 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3958 df-nul 4317 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-op 4629 df-uni 4902 df-int 4943 df-iun 4991 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5568 df-eprel 5574 df-po 5582 df-so 5583 df-fr 5625 df-se 5626 df-we 5627 df-xp 5676 df-rel 5677 df-cnv 5678 df-co 5679 df-dm 5680 df-rn 5681 df-res 5682 df-ima 5683 df-pred 6298 df-ord 6365 df-on 6366 df-lim 6367 df-suc 6368 df-iota 6493 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-isom 6550 df-riota 7370 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7867 df-1st 7989 df-2nd 7990 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-pm 8844 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-sup 9463 df-inf 9464 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-div 11900 df-nn 12241 df-2 12303 df-3 12304 df-n0 12501 df-z 12587 df-uz 12851 df-rp 13005 df-fz 13515 df-fzo 13658 df-fl 13787 df-seq 13997 df-exp 14057 df-hash 14320 df-cj 15076 df-re 15077 df-im 15078 df-sqrt 15212 df-abs 15213 df-clim 15462 df-rlim 15463 df-sum 15663 |
This theorem is referenced by: effsumlt 16085 eirrlem 16178 aaliou3lem3 26295 |
Copyright terms: Public domain | W3C validator |