MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isumrpcl Structured version   Visualization version   GIF version

Theorem isumrpcl 15176
Description: The infinite sum of positive reals is positive. (Contributed by Paul Chapman, 9-Feb-2008.) (Revised by Mario Carneiro, 24-Apr-2014.)
Hypotheses
Ref Expression
isumrpcl.1 𝑍 = (ℤ𝑀)
isumrpcl.2 𝑊 = (ℤ𝑁)
isumrpcl.3 (𝜑𝑁𝑍)
isumrpcl.4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
isumrpcl.5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
isumrpcl.6 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
Assertion
Ref Expression
isumrpcl (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Distinct variable groups:   𝑘,𝐹   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘   𝑘,𝑊   𝑘,𝑍
Allowed substitution hint:   𝐴(𝑘)

Proof of Theorem isumrpcl
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 isumrpcl.2 . . 3 𝑊 = (ℤ𝑁)
2 isumrpcl.3 . . . . 5 (𝜑𝑁𝑍)
3 isumrpcl.1 . . . . 5 𝑍 = (ℤ𝑀)
42, 3eleqtrdi 2921 . . . 4 (𝜑𝑁 ∈ (ℤ𝑀))
5 eluzelz 12230 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
64, 5syl 17 . . 3 (𝜑𝑁 ∈ ℤ)
7 uzss 12242 . . . . . . 7 (𝑁 ∈ (ℤ𝑀) → (ℤ𝑁) ⊆ (ℤ𝑀))
84, 7syl 17 . . . . . 6 (𝜑 → (ℤ𝑁) ⊆ (ℤ𝑀))
98, 1, 33sstr4g 3988 . . . . 5 (𝜑𝑊𝑍)
109sselda 3943 . . . 4 ((𝜑𝑘𝑊) → 𝑘𝑍)
11 isumrpcl.4 . . . 4 ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)
1210, 11syldan 593 . . 3 ((𝜑𝑘𝑊) → (𝐹𝑘) = 𝐴)
13 isumrpcl.5 . . . . 5 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ+)
1413rpred 12408 . . . 4 ((𝜑𝑘𝑍) → 𝐴 ∈ ℝ)
1510, 14syldan 593 . . 3 ((𝜑𝑘𝑊) → 𝐴 ∈ ℝ)
16 isumrpcl.6 . . . 4 (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )
1711, 13eqeltrd 2911 . . . . . 6 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℝ+)
1817rpcnd 12410 . . . . 5 ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)
193, 2, 18iserex 14991 . . . 4 (𝜑 → (seq𝑀( + , 𝐹) ∈ dom ⇝ ↔ seq𝑁( + , 𝐹) ∈ dom ⇝ ))
2016, 19mpbid 234 . . 3 (𝜑 → seq𝑁( + , 𝐹) ∈ dom ⇝ )
211, 6, 12, 15, 20isumrecl 15098 . 2 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ)
22 fveq2 6644 . . . 4 (𝑘 = 𝑁 → (𝐹𝑘) = (𝐹𝑁))
2322eleq1d 2895 . . 3 (𝑘 = 𝑁 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑁) ∈ ℝ+))
2417ralrimiva 3169 . . 3 (𝜑 → ∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+)
2523, 24, 2rspcdva 3604 . 2 (𝜑 → (𝐹𝑁) ∈ ℝ+)
26 seq1 13364 . . . 4 (𝑁 ∈ ℤ → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
276, 26syl 17 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) = (𝐹𝑁))
28 uzid 12235 . . . . . 6 (𝑁 ∈ ℤ → 𝑁 ∈ (ℤ𝑁))
296, 28syl 17 . . . . 5 (𝜑𝑁 ∈ (ℤ𝑁))
3029, 1eleqtrrdi 2922 . . . 4 (𝜑𝑁𝑊)
3115recnd 10645 . . . . 5 ((𝜑𝑘𝑊) → 𝐴 ∈ ℂ)
321, 6, 12, 31, 20isumclim2 15091 . . . 4 (𝜑 → seq𝑁( + , 𝐹) ⇝ Σ𝑘𝑊 𝐴)
339sseld 3942 . . . . . . 7 (𝜑 → (𝑚𝑊𝑚𝑍))
34 fveq2 6644 . . . . . . . . 9 (𝑘 = 𝑚 → (𝐹𝑘) = (𝐹𝑚))
3534eleq1d 2895 . . . . . . . 8 (𝑘 = 𝑚 → ((𝐹𝑘) ∈ ℝ+ ↔ (𝐹𝑚) ∈ ℝ+))
3635rspcv 3597 . . . . . . 7 (𝑚𝑍 → (∀𝑘𝑍 (𝐹𝑘) ∈ ℝ+ → (𝐹𝑚) ∈ ℝ+))
3733, 24, 36syl6ci 71 . . . . . 6 (𝜑 → (𝑚𝑊 → (𝐹𝑚) ∈ ℝ+))
3837imp 409 . . . . 5 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ+)
3938rpred 12408 . . . 4 ((𝜑𝑚𝑊) → (𝐹𝑚) ∈ ℝ)
4038rpge0d 12412 . . . 4 ((𝜑𝑚𝑊) → 0 ≤ (𝐹𝑚))
411, 30, 32, 39, 40climserle 14997 . . 3 (𝜑 → (seq𝑁( + , 𝐹)‘𝑁) ≤ Σ𝑘𝑊 𝐴)
4227, 41eqbrtrrd 5064 . 2 (𝜑 → (𝐹𝑁) ≤ Σ𝑘𝑊 𝐴)
4321, 25, 42rpgecld 12447 1 (𝜑 → Σ𝑘𝑊 𝐴 ∈ ℝ+)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3125  wss 3912  dom cdm 5529  cfv 6329  cr 10512   + caddc 10516  cle 10652  cz 11958  cuz 12220  +crp 12366  seqcseq 13351  cli 14819  Σcsu 15020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-inf2 9080  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590  ax-pre-sup 10591
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-se 5489  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-isom 6338  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-om 7557  df-1st 7665  df-2nd 7666  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-1o 8078  df-oadd 8082  df-er 8265  df-pm 8385  df-en 8486  df-dom 8487  df-sdom 8488  df-fin 8489  df-sup 8882  df-inf 8883  df-oi 8950  df-card 9344  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-div 11274  df-nn 11615  df-2 11677  df-3 11678  df-n0 11875  df-z 11959  df-uz 12221  df-rp 12367  df-fz 12875  df-fzo 13016  df-fl 13144  df-seq 13352  df-exp 13413  df-hash 13674  df-cj 14436  df-re 14437  df-im 14438  df-sqrt 14572  df-abs 14573  df-clim 14823  df-rlim 14824  df-sum 15021
This theorem is referenced by:  effsumlt  15442  eirrlem  15535  aaliou3lem3  24916
  Copyright terms: Public domain W3C validator