MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbumgrvtx Structured version   Visualization version   GIF version

Theorem nbumgrvtx 27616
Description: The set of neighbors of a vertex in a multigraph. (Contributed by AV, 27-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbumgrvtx ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbumgrvtx
Dummy variables 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 27606 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
43adantl 481 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
5 eldifi 4057 . . . . . . . . . 10 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥𝑉)
65adantl 481 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥𝑉)
76adantr 480 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → 𝑥𝑉)
8 umgrupgr 27376 . . . . . . . . . . . . 13 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
98ad4antr 728 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝐺 ∈ UPGraph)
10 simpr 484 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
1110adantr 480 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝑒𝐸)
12 simpr 484 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} ⊆ 𝑒)
13 simpr 484 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑁𝑉)
1413adantr 480 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
15 vex 3426 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ∈ V)
17 eldifsn 4717 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑥𝑉𝑥𝑁))
18 simpr 484 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑥𝑁) → 𝑥𝑁)
1918necomd 2998 . . . . . . . . . . . . . . . . 17 ((𝑥𝑉𝑥𝑁) → 𝑁𝑥)
2017, 19sylbi 216 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑥)
2120adantl 481 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑥)
2214, 16, 213jca 1126 . . . . . . . . . . . . . 14 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2322adantr 480 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2423adantr 480 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
251, 2upgredgpr 27415 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒) ∧ (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥)) → {𝑁, 𝑥} = 𝑒)
269, 11, 12, 24, 25syl31anc 1371 . . . . . . . . . . 11 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} = 𝑒)
2726ex 412 . . . . . . . . . 10 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} = 𝑒))
28 eleq1 2826 . . . . . . . . . . 11 ({𝑁, 𝑥} = 𝑒 → ({𝑁, 𝑥} ∈ 𝐸𝑒𝐸))
2928biimprd 247 . . . . . . . . . 10 ({𝑁, 𝑥} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑥} ∈ 𝐸))
3027, 10, 29syl6ci 71 . . . . . . . . 9 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} ∈ 𝐸))
3130impr 454 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → {𝑁, 𝑥} ∈ 𝐸)
327, 31jca 511 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
3332rexlimdvaa 3213 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒 → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
3433expimpd 453 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
35 simprl 767 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑉)
362umgredgne 27418 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑥} ∈ 𝐸) → 𝑁𝑥)
3736ad2ant2rl 745 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑁𝑥)
3837necomd 2998 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑁)
3935, 38, 17sylanbrc 582 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥 ∈ (𝑉 ∖ {𝑁}))
40 simpr 484 . . . . . . . . 9 ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → {𝑁, 𝑥} ∈ 𝐸)
4140adantl 481 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ∈ 𝐸)
42 sseq2 3943 . . . . . . . . 9 (𝑒 = {𝑁, 𝑥} → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
4342adantl 481 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) ∧ 𝑒 = {𝑁, 𝑥}) → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
44 ssidd 3940 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ⊆ {𝑁, 𝑥})
4541, 43, 44rspcedvd 3555 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)
4639, 45jca 511 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
4746ex 412 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)))
4834, 47impbid 211 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
49 preq2 4667 . . . . . . 7 (𝑣 = 𝑥 → {𝑁, 𝑣} = {𝑁, 𝑥})
5049sseq1d 3948 . . . . . 6 (𝑣 = 𝑥 → ({𝑁, 𝑣} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ 𝑒))
5150rexbidv 3225 . . . . 5 (𝑣 = 𝑥 → (∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
5251elrab 3617 . . . 4 (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
53 preq2 4667 . . . . . 6 (𝑛 = 𝑥 → {𝑁, 𝑛} = {𝑁, 𝑥})
5453eleq1d 2823 . . . . 5 (𝑛 = 𝑥 → ({𝑁, 𝑛} ∈ 𝐸 ↔ {𝑁, 𝑥} ∈ 𝐸))
5554elrab 3617 . . . 4 (𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
5648, 52, 553bitr4g 313 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ 𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
5756eqrdv 2736 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
584, 57eqtrd 2778 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wrex 3064  {crab 3067  Vcvv 3422  cdif 3880  wss 3883  {csn 4558  {cpr 4560  cfv 6418  (class class class)co 7255  Vtxcvtx 27269  Edgcedg 27320  UPGraphcupgr 27353  UMGraphcumgr 27354   NeighbVtx cnbgr 27602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-fz 13169  df-hash 13973  df-edg 27321  df-upgr 27355  df-umgr 27356  df-nbgr 27603
This theorem is referenced by:  nbumgr  27617  nbusgrvtx  27618  umgr2v2enb1  27796
  Copyright terms: Public domain W3C validator