MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbumgrvtx Structured version   Visualization version   GIF version

Theorem nbumgrvtx 27713
Description: The set of neighbors of a vertex in a multigraph. (Contributed by AV, 27-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbumgrvtx ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbumgrvtx
Dummy variables 𝑒 𝑣 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 27703 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
43adantl 482 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒})
5 eldifi 4061 . . . . . . . . . 10 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑥𝑉)
65adantl 482 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥𝑉)
76adantr 481 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → 𝑥𝑉)
8 umgrupgr 27473 . . . . . . . . . . . . 13 (𝐺 ∈ UMGraph → 𝐺 ∈ UPGraph)
98ad4antr 729 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝐺 ∈ UPGraph)
10 simpr 485 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
1110adantr 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → 𝑒𝐸)
12 simpr 485 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} ⊆ 𝑒)
13 simpr 485 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → 𝑁𝑉)
1413adantr 481 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
15 vex 3436 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
1615a1i 11 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑥 ∈ V)
17 eldifsn 4720 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑥𝑉𝑥𝑁))
18 simpr 485 . . . . . . . . . . . . . . . . . 18 ((𝑥𝑉𝑥𝑁) → 𝑥𝑁)
1918necomd 2999 . . . . . . . . . . . . . . . . 17 ((𝑥𝑉𝑥𝑁) → 𝑁𝑥)
2017, 19sylbi 216 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑥)
2120adantl 482 . . . . . . . . . . . . . . 15 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑥)
2214, 16, 213jca 1127 . . . . . . . . . . . . . 14 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2322adantr 481 . . . . . . . . . . . . 13 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
2423adantr 481 . . . . . . . . . . . 12 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥))
251, 2upgredgpr 27512 . . . . . . . . . . . 12 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒) ∧ (𝑁𝑉𝑥 ∈ V ∧ 𝑁𝑥)) → {𝑁, 𝑥} = 𝑒)
269, 11, 12, 24, 25syl31anc 1372 . . . . . . . . . . 11 (((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑥} ⊆ 𝑒) → {𝑁, 𝑥} = 𝑒)
2726ex 413 . . . . . . . . . 10 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} = 𝑒))
28 eleq1 2826 . . . . . . . . . . 11 ({𝑁, 𝑥} = 𝑒 → ({𝑁, 𝑥} ∈ 𝐸𝑒𝐸))
2928biimprd 247 . . . . . . . . . 10 ({𝑁, 𝑥} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑥} ∈ 𝐸))
3027, 10, 29syl6ci 71 . . . . . . . . 9 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑥} ⊆ 𝑒 → {𝑁, 𝑥} ∈ 𝐸))
3130impr 455 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → {𝑁, 𝑥} ∈ 𝐸)
327, 31jca 512 . . . . . . 7 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) ∧ (𝑒𝐸 ∧ {𝑁, 𝑥} ⊆ 𝑒)) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
3332rexlimdvaa 3214 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ 𝑥 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒 → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
3433expimpd 454 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) → (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
35 simprl 768 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑉)
362umgredgne 27515 . . . . . . . . . 10 ((𝐺 ∈ UMGraph ∧ {𝑁, 𝑥} ∈ 𝐸) → 𝑁𝑥)
3736ad2ant2rl 746 . . . . . . . . 9 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑁𝑥)
3837necomd 2999 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥𝑁)
3935, 38, 17sylanbrc 583 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → 𝑥 ∈ (𝑉 ∖ {𝑁}))
40 simpr 485 . . . . . . . . 9 ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → {𝑁, 𝑥} ∈ 𝐸)
4140adantl 482 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ∈ 𝐸)
42 sseq2 3947 . . . . . . . . 9 (𝑒 = {𝑁, 𝑥} → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
4342adantl 482 . . . . . . . 8 ((((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) ∧ 𝑒 = {𝑁, 𝑥}) → ({𝑁, 𝑥} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ {𝑁, 𝑥}))
44 ssidd 3944 . . . . . . . 8 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → {𝑁, 𝑥} ⊆ {𝑁, 𝑥})
4541, 43, 44rspcedvd 3563 . . . . . . 7 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)
4639, 45jca 512 . . . . . 6 (((𝐺 ∈ UMGraph ∧ 𝑁𝑉) ∧ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
4746ex 413 . . . . 5 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸) → (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒)))
4834, 47impbid 211 . . . 4 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → ((𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒) ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸)))
49 preq2 4670 . . . . . . 7 (𝑣 = 𝑥 → {𝑁, 𝑣} = {𝑁, 𝑥})
5049sseq1d 3952 . . . . . 6 (𝑣 = 𝑥 → ({𝑁, 𝑣} ⊆ 𝑒 ↔ {𝑁, 𝑥} ⊆ 𝑒))
5150rexbidv 3226 . . . . 5 (𝑣 = 𝑥 → (∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒 ↔ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
5251elrab 3624 . . . 4 (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ (𝑥 ∈ (𝑉 ∖ {𝑁}) ∧ ∃𝑒𝐸 {𝑁, 𝑥} ⊆ 𝑒))
53 preq2 4670 . . . . . 6 (𝑛 = 𝑥 → {𝑁, 𝑛} = {𝑁, 𝑥})
5453eleq1d 2823 . . . . 5 (𝑛 = 𝑥 → ({𝑁, 𝑛} ∈ 𝐸 ↔ {𝑁, 𝑥} ∈ 𝐸))
5554elrab 3624 . . . 4 (𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸} ↔ (𝑥𝑉 ∧ {𝑁, 𝑥} ∈ 𝐸))
5648, 52, 553bitr4g 314 . . 3 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝑥 ∈ {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} ↔ 𝑥 ∈ {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸}))
5756eqrdv 2736 . 2 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → {𝑣 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑣} ⊆ 𝑒} = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
584, 57eqtrd 2778 1 ((𝐺 ∈ UMGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛𝑉 ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wne 2943  wrex 3065  {crab 3068  Vcvv 3432  cdif 3884  wss 3887  {csn 4561  {cpr 4563  cfv 6433  (class class class)co 7275  Vtxcvtx 27366  Edgcedg 27417  UPGraphcupgr 27450  UMGraphcumgr 27451   NeighbVtx cnbgr 27699
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-oadd 8301  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-dju 9659  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-n0 12234  df-xnn0 12306  df-z 12320  df-uz 12583  df-fz 13240  df-hash 14045  df-edg 27418  df-upgr 27452  df-umgr 27453  df-nbgr 27700
This theorem is referenced by:  nbumgr  27714  nbusgrvtx  27715  umgr2v2enb1  27893
  Copyright terms: Public domain W3C validator