MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfvima Structured version   Visualization version   GIF version

Theorem kqfvima 23225
Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima 7231, which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
Assertion
Ref Expression
kqfvima ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ (𝐴 ∈ π‘ˆ ↔ (πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ)))
Distinct variable groups:   π‘₯,𝑦,𝐴   π‘₯,𝐽,𝑦   π‘₯,𝑋,𝑦
Allowed substitution hints:   π‘ˆ(π‘₯,𝑦)   𝐹(π‘₯,𝑦)

Proof of Theorem kqfvima
Dummy variables 𝑀 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (π‘₯ ∈ 𝑋 ↦ {𝑦 ∈ 𝐽 ∣ π‘₯ ∈ 𝑦})
21kqffn 23220 . . . 4 (𝐽 ∈ (TopOnβ€˜π‘‹) β†’ 𝐹 Fn 𝑋)
323ad2ant1 1133 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ 𝐹 Fn 𝑋)
4 toponss 22420 . . . 4 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽) β†’ π‘ˆ βŠ† 𝑋)
543adant3 1132 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ π‘ˆ βŠ† 𝑋)
6 fnfvima 7231 . . . 4 ((𝐹 Fn 𝑋 ∧ π‘ˆ βŠ† 𝑋 ∧ 𝐴 ∈ π‘ˆ) β†’ (πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ))
763expia 1121 . . 3 ((𝐹 Fn 𝑋 ∧ π‘ˆ βŠ† 𝑋) β†’ (𝐴 ∈ π‘ˆ β†’ (πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ)))
83, 5, 7syl2anc 584 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ (𝐴 ∈ π‘ˆ β†’ (πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ)))
9 fnfun 6646 . . . 4 (𝐹 Fn 𝑋 β†’ Fun 𝐹)
10 fvelima 6954 . . . . 5 ((Fun 𝐹 ∧ (πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ)) β†’ βˆƒπ‘§ ∈ π‘ˆ (πΉβ€˜π‘§) = (πΉβ€˜π΄))
1110ex 413 . . . 4 (Fun 𝐹 β†’ ((πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ) β†’ βˆƒπ‘§ ∈ π‘ˆ (πΉβ€˜π‘§) = (πΉβ€˜π΄)))
123, 9, 113syl 18 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ ((πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ) β†’ βˆƒπ‘§ ∈ π‘ˆ (πΉβ€˜π‘§) = (πΉβ€˜π΄)))
13 simpl1 1191 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
145sselda 3981 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ 𝑧 ∈ 𝑋)
15 simpl3 1193 . . . . . . . 8 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ 𝐴 ∈ 𝑋)
161kqfeq 23219 . . . . . . . 8 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ 𝑧 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π΄) ↔ βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)))
1713, 14, 15, 16syl3anc 1371 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π΄) ↔ βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦)))
18 eleq2 2822 . . . . . . . . 9 (𝑦 = 𝑀 β†’ (𝑧 ∈ 𝑦 ↔ 𝑧 ∈ 𝑀))
19 eleq2 2822 . . . . . . . . 9 (𝑦 = 𝑀 β†’ (𝐴 ∈ 𝑦 ↔ 𝐴 ∈ 𝑀))
2018, 19bibi12d 345 . . . . . . . 8 (𝑦 = 𝑀 β†’ ((𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦) ↔ (𝑧 ∈ 𝑀 ↔ 𝐴 ∈ 𝑀)))
2120cbvralvw 3234 . . . . . . 7 (βˆ€π‘¦ ∈ 𝐽 (𝑧 ∈ 𝑦 ↔ 𝐴 ∈ 𝑦) ↔ βˆ€π‘€ ∈ 𝐽 (𝑧 ∈ 𝑀 ↔ 𝐴 ∈ 𝑀))
2217, 21bitrdi 286 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π΄) ↔ βˆ€π‘€ ∈ 𝐽 (𝑧 ∈ 𝑀 ↔ 𝐴 ∈ 𝑀)))
23 simpl2 1192 . . . . . . 7 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ π‘ˆ ∈ 𝐽)
24 eleq2 2822 . . . . . . . . 9 (𝑀 = π‘ˆ β†’ (𝑧 ∈ 𝑀 ↔ 𝑧 ∈ π‘ˆ))
25 eleq2 2822 . . . . . . . . 9 (𝑀 = π‘ˆ β†’ (𝐴 ∈ 𝑀 ↔ 𝐴 ∈ π‘ˆ))
2624, 25bibi12d 345 . . . . . . . 8 (𝑀 = π‘ˆ β†’ ((𝑧 ∈ 𝑀 ↔ 𝐴 ∈ 𝑀) ↔ (𝑧 ∈ π‘ˆ ↔ 𝐴 ∈ π‘ˆ)))
2726rspcv 3608 . . . . . . 7 (π‘ˆ ∈ 𝐽 β†’ (βˆ€π‘€ ∈ 𝐽 (𝑧 ∈ 𝑀 ↔ 𝐴 ∈ 𝑀) β†’ (𝑧 ∈ π‘ˆ ↔ 𝐴 ∈ π‘ˆ)))
2823, 27syl 17 . . . . . 6 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ (βˆ€π‘€ ∈ 𝐽 (𝑧 ∈ 𝑀 ↔ 𝐴 ∈ 𝑀) β†’ (𝑧 ∈ π‘ˆ ↔ 𝐴 ∈ π‘ˆ)))
2922, 28sylbid 239 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π΄) β†’ (𝑧 ∈ π‘ˆ ↔ 𝐴 ∈ π‘ˆ)))
30 simpr 485 . . . . 5 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ 𝑧 ∈ π‘ˆ)
31 biimp 214 . . . . 5 ((𝑧 ∈ π‘ˆ ↔ 𝐴 ∈ π‘ˆ) β†’ (𝑧 ∈ π‘ˆ β†’ 𝐴 ∈ π‘ˆ))
3229, 30, 31syl6ci 71 . . . 4 (((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) ∧ 𝑧 ∈ π‘ˆ) β†’ ((πΉβ€˜π‘§) = (πΉβ€˜π΄) β†’ 𝐴 ∈ π‘ˆ))
3332rexlimdva 3155 . . 3 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ (βˆƒπ‘§ ∈ π‘ˆ (πΉβ€˜π‘§) = (πΉβ€˜π΄) β†’ 𝐴 ∈ π‘ˆ))
3412, 33syld 47 . 2 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ ((πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ) β†’ 𝐴 ∈ π‘ˆ))
358, 34impbid 211 1 ((𝐽 ∈ (TopOnβ€˜π‘‹) ∧ π‘ˆ ∈ 𝐽 ∧ 𝐴 ∈ 𝑋) β†’ (𝐴 ∈ π‘ˆ ↔ (πΉβ€˜π΄) ∈ (𝐹 β€œ π‘ˆ)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106  βˆ€wral 3061  βˆƒwrex 3070  {crab 3432   βŠ† wss 3947   ↦ cmpt 5230   β€œ cima 5678  Fun wfun 6534   Fn wfn 6535  β€˜cfv 6540  TopOnctopon 22403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-fv 6548  df-topon 22404
This theorem is referenced by:  kqsat  23226  kqdisj  23227  kqcldsat  23228  kqt0lem  23231  isr0  23232  regr1lem  23234  kqreglem1  23236  kqreglem2  23237
  Copyright terms: Public domain W3C validator