MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfvima Structured version   Visualization version   GIF version

Theorem kqfvima 23678
Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima 7245, which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfvima ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (𝐴𝑈 ↔ (𝐹𝐴) ∈ (𝐹𝑈)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqfvima
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 23673 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
323ad2ant1 1130 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → 𝐹 Fn 𝑋)
4 toponss 22873 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
543adant3 1129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → 𝑈𝑋)
6 fnfvima 7245 . . . 4 ((𝐹 Fn 𝑋𝑈𝑋𝐴𝑈) → (𝐹𝐴) ∈ (𝐹𝑈))
763expia 1118 . . 3 ((𝐹 Fn 𝑋𝑈𝑋) → (𝐴𝑈 → (𝐹𝐴) ∈ (𝐹𝑈)))
83, 5, 7syl2anc 582 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (𝐴𝑈 → (𝐹𝐴) ∈ (𝐹𝑈)))
9 fnfun 6655 . . . 4 (𝐹 Fn 𝑋 → Fun 𝐹)
10 fvelima 6963 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐴) ∈ (𝐹𝑈)) → ∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴))
1110ex 411 . . . 4 (Fun 𝐹 → ((𝐹𝐴) ∈ (𝐹𝑈) → ∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴)))
123, 9, 113syl 18 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → ((𝐹𝐴) ∈ (𝐹𝑈) → ∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴)))
13 simpl1 1188 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝐽 ∈ (TopOn‘𝑋))
145sselda 3976 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝑧𝑋)
15 simpl3 1190 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝐴𝑋)
161kqfeq 23672 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
1713, 14, 15, 16syl3anc 1368 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
18 eleq2 2814 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
19 eleq2 2814 . . . . . . . . 9 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
2018, 19bibi12d 344 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑧𝑦𝐴𝑦) ↔ (𝑧𝑤𝐴𝑤)))
2120cbvralvw 3224 . . . . . . 7 (∀𝑦𝐽 (𝑧𝑦𝐴𝑦) ↔ ∀𝑤𝐽 (𝑧𝑤𝐴𝑤))
2217, 21bitrdi 286 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑤𝐽 (𝑧𝑤𝐴𝑤)))
23 simpl2 1189 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝑈𝐽)
24 eleq2 2814 . . . . . . . . 9 (𝑤 = 𝑈 → (𝑧𝑤𝑧𝑈))
25 eleq2 2814 . . . . . . . . 9 (𝑤 = 𝑈 → (𝐴𝑤𝐴𝑈))
2624, 25bibi12d 344 . . . . . . . 8 (𝑤 = 𝑈 → ((𝑧𝑤𝐴𝑤) ↔ (𝑧𝑈𝐴𝑈)))
2726rspcv 3602 . . . . . . 7 (𝑈𝐽 → (∀𝑤𝐽 (𝑧𝑤𝐴𝑤) → (𝑧𝑈𝐴𝑈)))
2823, 27syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → (∀𝑤𝐽 (𝑧𝑤𝐴𝑤) → (𝑧𝑈𝐴𝑈)))
2922, 28sylbid 239 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) → (𝑧𝑈𝐴𝑈)))
30 simpr 483 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝑧𝑈)
31 biimp 214 . . . . 5 ((𝑧𝑈𝐴𝑈) → (𝑧𝑈𝐴𝑈))
3229, 30, 31syl6ci 71 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) → 𝐴𝑈))
3332rexlimdva 3144 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴) → 𝐴𝑈))
3412, 33syld 47 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → ((𝐹𝐴) ∈ (𝐹𝑈) → 𝐴𝑈))
358, 34impbid 211 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (𝐴𝑈 ↔ (𝐹𝐴) ∈ (𝐹𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3050  wrex 3059  {crab 3418  wss 3944  cmpt 5232  cima 5681  Fun wfun 6543   Fn wfn 6544  cfv 6549  TopOnctopon 22856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fv 6557  df-topon 22857
This theorem is referenced by:  kqsat  23679  kqdisj  23680  kqcldsat  23681  kqt0lem  23684  isr0  23685  regr1lem  23687  kqreglem1  23689  kqreglem2  23690
  Copyright terms: Public domain W3C validator