Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfvima Structured version   Visualization version   GIF version

Theorem kqfvima 22341
 Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima 6987, which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
Assertion
Ref Expression
kqfvima ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (𝐴𝑈 ↔ (𝐹𝐴) ∈ (𝐹𝑈)))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐽,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝑈(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem kqfvima
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5 𝐹 = (𝑥𝑋 ↦ {𝑦𝐽𝑥𝑦})
21kqffn 22336 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝐹 Fn 𝑋)
323ad2ant1 1130 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → 𝐹 Fn 𝑋)
4 toponss 21538 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽) → 𝑈𝑋)
543adant3 1129 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → 𝑈𝑋)
6 fnfvima 6987 . . . 4 ((𝐹 Fn 𝑋𝑈𝑋𝐴𝑈) → (𝐹𝐴) ∈ (𝐹𝑈))
763expia 1118 . . 3 ((𝐹 Fn 𝑋𝑈𝑋) → (𝐴𝑈 → (𝐹𝐴) ∈ (𝐹𝑈)))
83, 5, 7syl2anc 587 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (𝐴𝑈 → (𝐹𝐴) ∈ (𝐹𝑈)))
9 fnfun 6441 . . . 4 (𝐹 Fn 𝑋 → Fun 𝐹)
10 fvelima 6722 . . . . 5 ((Fun 𝐹 ∧ (𝐹𝐴) ∈ (𝐹𝑈)) → ∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴))
1110ex 416 . . . 4 (Fun 𝐹 → ((𝐹𝐴) ∈ (𝐹𝑈) → ∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴)))
123, 9, 113syl 18 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → ((𝐹𝐴) ∈ (𝐹𝑈) → ∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴)))
13 simpl1 1188 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝐽 ∈ (TopOn‘𝑋))
145sselda 3953 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝑧𝑋)
15 simpl3 1190 . . . . . . . 8 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝐴𝑋)
161kqfeq 22335 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑧𝑋𝐴𝑋) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
1713, 14, 15, 16syl3anc 1368 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑦𝐽 (𝑧𝑦𝐴𝑦)))
18 eleq2 2904 . . . . . . . . 9 (𝑦 = 𝑤 → (𝑧𝑦𝑧𝑤))
19 eleq2 2904 . . . . . . . . 9 (𝑦 = 𝑤 → (𝐴𝑦𝐴𝑤))
2018, 19bibi12d 349 . . . . . . . 8 (𝑦 = 𝑤 → ((𝑧𝑦𝐴𝑦) ↔ (𝑧𝑤𝐴𝑤)))
2120cbvralvw 3434 . . . . . . 7 (∀𝑦𝐽 (𝑧𝑦𝐴𝑦) ↔ ∀𝑤𝐽 (𝑧𝑤𝐴𝑤))
2217, 21syl6bb 290 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) ↔ ∀𝑤𝐽 (𝑧𝑤𝐴𝑤)))
23 simpl2 1189 . . . . . . 7 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝑈𝐽)
24 eleq2 2904 . . . . . . . . 9 (𝑤 = 𝑈 → (𝑧𝑤𝑧𝑈))
25 eleq2 2904 . . . . . . . . 9 (𝑤 = 𝑈 → (𝐴𝑤𝐴𝑈))
2624, 25bibi12d 349 . . . . . . . 8 (𝑤 = 𝑈 → ((𝑧𝑤𝐴𝑤) ↔ (𝑧𝑈𝐴𝑈)))
2726rspcv 3604 . . . . . . 7 (𝑈𝐽 → (∀𝑤𝐽 (𝑧𝑤𝐴𝑤) → (𝑧𝑈𝐴𝑈)))
2823, 27syl 17 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → (∀𝑤𝐽 (𝑧𝑤𝐴𝑤) → (𝑧𝑈𝐴𝑈)))
2922, 28sylbid 243 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) → (𝑧𝑈𝐴𝑈)))
30 simpr 488 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → 𝑧𝑈)
31 biimp 218 . . . . 5 ((𝑧𝑈𝐴𝑈) → (𝑧𝑈𝐴𝑈))
3229, 30, 31syl6ci 71 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) ∧ 𝑧𝑈) → ((𝐹𝑧) = (𝐹𝐴) → 𝐴𝑈))
3332rexlimdva 3276 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (∃𝑧𝑈 (𝐹𝑧) = (𝐹𝐴) → 𝐴𝑈))
3412, 33syld 47 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → ((𝐹𝐴) ∈ (𝐹𝑈) → 𝐴𝑈))
358, 34impbid 215 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑈𝐽𝐴𝑋) → (𝐴𝑈 ↔ (𝐹𝐴) ∈ (𝐹𝑈)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134  {crab 3137   ⊆ wss 3919   ↦ cmpt 5132   “ cima 5545  Fun wfun 6337   Fn wfn 6338  ‘cfv 6343  TopOnctopon 21521 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-ral 3138  df-rex 3139  df-rab 3142  df-v 3482  df-sbc 3759  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-op 4557  df-uni 4825  df-br 5053  df-opab 5115  df-mpt 5133  df-id 5447  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-fv 6351  df-topon 21522 This theorem is referenced by:  kqsat  22342  kqdisj  22343  kqcldsat  22344  kqt0lem  22347  isr0  22348  regr1lem  22350  kqreglem1  22352  kqreglem2  22353
 Copyright terms: Public domain W3C validator