MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgr Structured version   Visualization version   GIF version

Theorem nbupgr 26829
Description: The set of neighbors of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbupgr ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbupgr
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 26821 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
43adantl 474 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
5 simp-4l 770 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UPGraph)
6 simpr 477 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
76adantr 473 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → 𝑒𝐸)
8 simpr 477 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → {𝑁, 𝑛} ⊆ 𝑒)
9 simpr 477 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁𝑉)
109adantr 473 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
11 vex 3418 . . . . . . . . . . . 12 𝑛 ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑛 ∈ V)
13 eldifsn 4593 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑛𝑉𝑛𝑁))
14 simpr 477 . . . . . . . . . . . . . 14 ((𝑛𝑉𝑛𝑁) → 𝑛𝑁)
1514necomd 3022 . . . . . . . . . . . . 13 ((𝑛𝑉𝑛𝑁) → 𝑁𝑛)
1613, 15sylbi 209 . . . . . . . . . . . 12 (𝑛 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑛)
1716adantl 474 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑛)
1810, 12, 173jca 1108 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
1918adantr 473 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
2019adantr 473 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
211, 2upgredgpr 26630 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑛} ⊆ 𝑒) ∧ (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛)) → {𝑁, 𝑛} = 𝑒)
225, 7, 8, 20, 21syl31anc 1353 . . . . . . 7 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → {𝑁, 𝑛} = 𝑒)
2322ex 405 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} = 𝑒))
24 eleq1 2853 . . . . . . 7 ({𝑁, 𝑛} = 𝑒 → ({𝑁, 𝑛} ∈ 𝐸𝑒𝐸))
2524biimprd 240 . . . . . 6 ({𝑁, 𝑛} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑛} ∈ 𝐸))
2623, 6, 25syl6ci 71 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} ∈ 𝐸))
2726rexlimdva 3229 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} ∈ 𝐸))
28 simpr 477 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → {𝑁, 𝑛} ∈ 𝐸)
29 sseq2 3883 . . . . . . 7 (𝑒 = {𝑁, 𝑛} → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ {𝑁, 𝑛}))
3029adantl 474 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) ∧ 𝑒 = {𝑁, 𝑛}) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ {𝑁, 𝑛}))
31 ssidd 3880 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → {𝑁, 𝑛} ⊆ {𝑁, 𝑛})
3228, 30, 31rspcedvd 3542 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
3332ex 405 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → ({𝑁, 𝑛} ∈ 𝐸 → ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3427, 33impbid 204 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ∈ 𝐸))
3534rabbidva 3402 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
364, 35eqtrd 2814 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1068   = wceq 1507  wcel 2050  wne 2967  wrex 3089  {crab 3092  Vcvv 3415  cdif 3826  wss 3829  {csn 4441  {cpr 4443  cfv 6188  (class class class)co 6976  Vtxcvtx 26484  Edgcedg 26535  UPGraphcupgr 26568   NeighbVtx cnbgr 26817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-rep 5049  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411  ax-pre-mulgt0 10412
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-int 4750  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-riota 6937  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-1st 7501  df-2nd 7502  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-1o 7905  df-2o 7906  df-oadd 7909  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-fin 8310  df-dju 9124  df-card 9162  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-le 10480  df-sub 10672  df-neg 10673  df-nn 11440  df-2 11503  df-n0 11708  df-xnn0 11780  df-z 11794  df-uz 12059  df-fz 12709  df-hash 13506  df-edg 26536  df-upgr 26570  df-nbgr 26818
This theorem is referenced by:  nbupgrel  26830  1loopgrnb0  26987
  Copyright terms: Public domain W3C validator