MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgr Structured version   Visualization version   GIF version

Theorem nbupgr 27756
Description: The set of neighbors of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbupgr ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbupgr
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 27748 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
43adantl 483 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
5 simp-4l 781 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UPGraph)
6 simpr 486 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
76adantr 482 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → 𝑒𝐸)
8 simpr 486 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → {𝑁, 𝑛} ⊆ 𝑒)
9 simpr 486 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁𝑉)
109adantr 482 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
11 vex 3441 . . . . . . . . . . . 12 𝑛 ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑛 ∈ V)
13 eldifsn 4726 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑛𝑉𝑛𝑁))
14 simpr 486 . . . . . . . . . . . . . 14 ((𝑛𝑉𝑛𝑁) → 𝑛𝑁)
1514necomd 2997 . . . . . . . . . . . . 13 ((𝑛𝑉𝑛𝑁) → 𝑁𝑛)
1613, 15sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑛)
1716adantl 483 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑛)
1810, 12, 173jca 1128 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
1918adantr 482 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
2019adantr 482 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
211, 2upgredgpr 27557 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑛} ⊆ 𝑒) ∧ (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛)) → {𝑁, 𝑛} = 𝑒)
225, 7, 8, 20, 21syl31anc 1373 . . . . . . 7 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → {𝑁, 𝑛} = 𝑒)
2322ex 414 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} = 𝑒))
24 eleq1 2824 . . . . . . 7 ({𝑁, 𝑛} = 𝑒 → ({𝑁, 𝑛} ∈ 𝐸𝑒𝐸))
2524biimprd 248 . . . . . 6 ({𝑁, 𝑛} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑛} ∈ 𝐸))
2623, 6, 25syl6ci 71 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} ∈ 𝐸))
2726rexlimdva 3149 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} ∈ 𝐸))
28 simpr 486 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → {𝑁, 𝑛} ∈ 𝐸)
29 sseq2 3952 . . . . . . 7 (𝑒 = {𝑁, 𝑛} → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ {𝑁, 𝑛}))
3029adantl 483 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) ∧ 𝑒 = {𝑁, 𝑛}) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ {𝑁, 𝑛}))
31 ssidd 3949 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → {𝑁, 𝑛} ⊆ {𝑁, 𝑛})
3228, 30, 31rspcedvd 3568 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
3332ex 414 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → ({𝑁, 𝑛} ∈ 𝐸 → ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3427, 33impbid 211 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ∈ 𝐸))
3534rabbidva 3420 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
364, 35eqtrd 2776 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1087   = wceq 1539  wcel 2104  wne 2941  wrex 3071  {crab 3284  Vcvv 3437  cdif 3889  wss 3892  {csn 4565  {cpr 4567  cfv 6458  (class class class)co 7307  Vtxcvtx 27411  Edgcedg 27462  UPGraphcupgr 27495   NeighbVtx cnbgr 27744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-2o 8329  df-oadd 8332  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-dju 9703  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-nn 12020  df-2 12082  df-n0 12280  df-xnn0 12352  df-z 12366  df-uz 12629  df-fz 13286  df-hash 14091  df-edg 27463  df-upgr 27497  df-nbgr 27745
This theorem is referenced by:  nbupgrel  27757  1loopgrnb0  27914
  Copyright terms: Public domain W3C validator