MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nbupgr Structured version   Visualization version   GIF version

Theorem nbupgr 27692
Description: The set of neighbors of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020.) (Proof shortened by AV, 30-Dec-2020.)
Hypotheses
Ref Expression
nbuhgr.v 𝑉 = (Vtx‘𝐺)
nbuhgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
nbupgr ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
Distinct variable groups:   𝑛,𝐺   𝑛,𝑁   𝑛,𝑉   𝑛,𝐸

Proof of Theorem nbupgr
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 nbuhgr.v . . . 4 𝑉 = (Vtx‘𝐺)
2 nbuhgr.e . . . 4 𝐸 = (Edg‘𝐺)
31, 2nbgrval 27684 . . 3 (𝑁𝑉 → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
43adantl 481 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒})
5 simp-4l 779 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → 𝐺 ∈ UPGraph)
6 simpr 484 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → 𝑒𝐸)
76adantr 480 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → 𝑒𝐸)
8 simpr 484 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → {𝑁, 𝑛} ⊆ 𝑒)
9 simpr 484 . . . . . . . . . . . 12 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → 𝑁𝑉)
109adantr 480 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑉)
11 vex 3434 . . . . . . . . . . . 12 𝑛 ∈ V
1211a1i 11 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑛 ∈ V)
13 eldifsn 4725 . . . . . . . . . . . . 13 (𝑛 ∈ (𝑉 ∖ {𝑁}) ↔ (𝑛𝑉𝑛𝑁))
14 simpr 484 . . . . . . . . . . . . . 14 ((𝑛𝑉𝑛𝑁) → 𝑛𝑁)
1514necomd 3000 . . . . . . . . . . . . 13 ((𝑛𝑉𝑛𝑁) → 𝑁𝑛)
1613, 15sylbi 216 . . . . . . . . . . . 12 (𝑛 ∈ (𝑉 ∖ {𝑁}) → 𝑁𝑛)
1716adantl 481 . . . . . . . . . . 11 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → 𝑁𝑛)
1810, 12, 173jca 1126 . . . . . . . . . 10 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
1918adantr 480 . . . . . . . . 9 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
2019adantr 480 . . . . . . . 8 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛))
211, 2upgredgpr 27493 . . . . . . . 8 (((𝐺 ∈ UPGraph ∧ 𝑒𝐸 ∧ {𝑁, 𝑛} ⊆ 𝑒) ∧ (𝑁𝑉𝑛 ∈ V ∧ 𝑁𝑛)) → {𝑁, 𝑛} = 𝑒)
225, 7, 8, 20, 21syl31anc 1371 . . . . . . 7 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) ∧ {𝑁, 𝑛} ⊆ 𝑒) → {𝑁, 𝑛} = 𝑒)
2322ex 412 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} = 𝑒))
24 eleq1 2827 . . . . . . 7 ({𝑁, 𝑛} = 𝑒 → ({𝑁, 𝑛} ∈ 𝐸𝑒𝐸))
2524biimprd 247 . . . . . 6 ({𝑁, 𝑛} = 𝑒 → (𝑒𝐸 → {𝑁, 𝑛} ∈ 𝐸))
2623, 6, 25syl6ci 71 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ 𝑒𝐸) → ({𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} ∈ 𝐸))
2726rexlimdva 3214 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 → {𝑁, 𝑛} ∈ 𝐸))
28 simpr 484 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → {𝑁, 𝑛} ∈ 𝐸)
29 sseq2 3951 . . . . . . 7 (𝑒 = {𝑁, 𝑛} → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ {𝑁, 𝑛}))
3029adantl 481 . . . . . 6 (((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) ∧ 𝑒 = {𝑁, 𝑛}) → ({𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ⊆ {𝑁, 𝑛}))
31 ssidd 3948 . . . . . 6 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → {𝑁, 𝑛} ⊆ {𝑁, 𝑛})
3228, 30, 31rspcedvd 3563 . . . . 5 ((((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) ∧ {𝑁, 𝑛} ∈ 𝐸) → ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒)
3332ex 412 . . . 4 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → ({𝑁, 𝑛} ∈ 𝐸 → ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒))
3427, 33impbid 211 . . 3 (((𝐺 ∈ UPGraph ∧ 𝑁𝑉) ∧ 𝑛 ∈ (𝑉 ∖ {𝑁})) → (∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒 ↔ {𝑁, 𝑛} ∈ 𝐸))
3534rabbidva 3410 . 2 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ ∃𝑒𝐸 {𝑁, 𝑛} ⊆ 𝑒} = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
364, 35eqtrd 2779 1 ((𝐺 ∈ UPGraph ∧ 𝑁𝑉) → (𝐺 NeighbVtx 𝑁) = {𝑛 ∈ (𝑉 ∖ {𝑁}) ∣ {𝑁, 𝑛} ∈ 𝐸})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1541  wcel 2109  wne 2944  wrex 3066  {crab 3069  Vcvv 3430  cdif 3888  wss 3891  {csn 4566  {cpr 4568  cfv 6430  (class class class)co 7268  Vtxcvtx 27347  Edgcedg 27398  UPGraphcupgr 27431   NeighbVtx cnbgr 27680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-2o 8282  df-oadd 8285  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-dju 9643  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-nn 11957  df-2 12019  df-n0 12217  df-xnn0 12289  df-z 12303  df-uz 12565  df-fz 13222  df-hash 14026  df-edg 27399  df-upgr 27433  df-nbgr 27681
This theorem is referenced by:  nbupgrel  27693  1loopgrnb0  27850
  Copyright terms: Public domain W3C validator