| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2pwuninel | Structured version Visualization version GIF version | ||
| Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
| Ref | Expression |
|---|---|
| 2pwuninel | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomirr 9027 | . . 3 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 | |
| 2 | elssuni 4887 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
| 3 | ssdomg 8922 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴)) | |
| 4 | canth2g 9044 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴) | |
| 5 | pwexb 7699 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V) | |
| 6 | canth2g 9044 | . . . . . . 7 ⊢ (𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
| 7 | 5, 6 | sylbi 217 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
| 8 | sdomtr 9028 | . . . . . 6 ⊢ ((∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
| 9 | 4, 7, 8 | syl2anc 584 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
| 10 | domsdomtr 9025 | . . . . . 6 ⊢ ((𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
| 11 | 10 | ex 412 | . . . . 5 ⊢ (𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → (∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
| 12 | 3, 9, 11 | syl6ci 71 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
| 13 | 2, 12 | syl5 34 | . . 3 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
| 14 | 1, 13 | mtoi 199 | . 2 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
| 15 | elex 3457 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
| 16 | pwexb 7699 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
| 17 | 5, 16 | bitri 275 | . . . 4 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) |
| 18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) |
| 19 | 18 | con3i 154 | . 2 ⊢ (¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
| 20 | 14, 19 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 class class class wbr 5089 ≼ cdom 8867 ≺ csdm 8868 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 |
| This theorem is referenced by: mnfnre 11155 |
| Copyright terms: Public domain | W3C validator |