![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pwuninel | Structured version Visualization version GIF version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
Ref | Expression |
---|---|
2pwuninel | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9116 | . . 3 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 | |
2 | elssuni 4934 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
3 | ssdomg 8998 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴)) | |
4 | canth2g 9133 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴) | |
5 | pwexb 7750 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V) | |
6 | canth2g 9133 | . . . . . . 7 ⊢ (𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
7 | 5, 6 | sylbi 216 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
8 | sdomtr 9117 | . . . . . 6 ⊢ ((∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
9 | 4, 7, 8 | syl2anc 583 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
10 | domsdomtr 9114 | . . . . . 6 ⊢ ((𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
11 | 10 | ex 412 | . . . . 5 ⊢ (𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → (∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
12 | 3, 9, 11 | syl6ci 71 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
13 | 2, 12 | syl5 34 | . . 3 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
14 | 1, 13 | mtoi 198 | . 2 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
15 | elex 3487 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
16 | pwexb 7750 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
17 | 5, 16 | bitri 275 | . . . 4 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) |
19 | 18 | con3i 154 | . 2 ⊢ (¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
20 | 14, 19 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2098 Vcvv 3468 ⊆ wss 3943 𝒫 cpw 4597 ∪ cuni 4902 class class class wbr 5141 ≼ cdom 8939 ≺ csdm 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-br 5142 df-opab 5204 df-mpt 5225 df-id 5567 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 |
This theorem is referenced by: mnfnre 11261 |
Copyright terms: Public domain | W3C validator |