![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pwuninel | Structured version Visualization version GIF version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
Ref | Expression |
---|---|
2pwuninel | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9180 | . . 3 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 | |
2 | elssuni 4961 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
3 | ssdomg 9060 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴)) | |
4 | canth2g 9197 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴) | |
5 | pwexb 7801 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V) | |
6 | canth2g 9197 | . . . . . . 7 ⊢ (𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
7 | 5, 6 | sylbi 217 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
8 | sdomtr 9181 | . . . . . 6 ⊢ ((∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
9 | 4, 7, 8 | syl2anc 583 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
10 | domsdomtr 9178 | . . . . . 6 ⊢ ((𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
11 | 10 | ex 412 | . . . . 5 ⊢ (𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → (∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
12 | 3, 9, 11 | syl6ci 71 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
13 | 2, 12 | syl5 34 | . . 3 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
14 | 1, 13 | mtoi 199 | . 2 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
15 | elex 3509 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
16 | pwexb 7801 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
17 | 5, 16 | bitri 275 | . . . 4 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) |
18 | 15, 17 | sylibr 234 | . . 3 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) |
19 | 18 | con3i 154 | . 2 ⊢ (¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
20 | 14, 19 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 𝒫 cpw 4622 ∪ cuni 4931 class class class wbr 5166 ≼ cdom 9001 ≺ csdm 9002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 |
This theorem is referenced by: mnfnre 11333 |
Copyright terms: Public domain | W3C validator |