MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwuninel Structured version   Visualization version   GIF version

Theorem 2pwuninel 9073
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.)
Assertion
Ref Expression
2pwuninel ¬ 𝒫 𝒫 𝐴𝐴

Proof of Theorem 2pwuninel
StepHypRef Expression
1 sdomirr 9055 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 elssuni 4897 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 𝐴)
3 ssdomg 8948 . . . . 5 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 𝐴))
4 canth2g 9072 . . . . . 6 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
5 pwexb 7722 . . . . . . 7 ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
6 canth2g 9072 . . . . . . 7 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
75, 6sylbi 217 . . . . . 6 ( 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
8 sdomtr 9056 . . . . . 6 (( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
94, 7, 8syl2anc 584 . . . . 5 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝒫 𝐴)
10 domsdomtr 9053 . . . . . 6 ((𝒫 𝒫 𝐴 𝐴 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
1110ex 412 . . . . 5 (𝒫 𝒫 𝐴 𝐴 → ( 𝐴 ≺ 𝒫 𝒫 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
123, 9, 11syl6ci 71 . . . 4 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
132, 12syl5 34 . . 3 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
141, 13mtoi 199 . 2 ( 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
15 elex 3465 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ∈ V)
16 pwexb 7722 . . . . 5 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
175, 16bitri 275 . . . 4 ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
1815, 17sylibr 234 . . 3 (𝒫 𝒫 𝐴𝐴 𝐴 ∈ V)
1918con3i 154 . 2 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
2014, 19pm2.61i 182 1 ¬ 𝒫 𝒫 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559   cuni 4867   class class class wbr 5102  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  mnfnre  11193
  Copyright terms: Public domain W3C validator