MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwuninel Structured version   Visualization version   GIF version

Theorem 2pwuninel 9096
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.)
Assertion
Ref Expression
2pwuninel ¬ 𝒫 𝒫 𝐴𝐴

Proof of Theorem 2pwuninel
StepHypRef Expression
1 sdomirr 9078 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 elssuni 4901 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 𝐴)
3 ssdomg 8971 . . . . 5 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 𝐴))
4 canth2g 9095 . . . . . 6 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
5 pwexb 7742 . . . . . . 7 ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
6 canth2g 9095 . . . . . . 7 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
75, 6sylbi 217 . . . . . 6 ( 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
8 sdomtr 9079 . . . . . 6 (( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
94, 7, 8syl2anc 584 . . . . 5 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝒫 𝐴)
10 domsdomtr 9076 . . . . . 6 ((𝒫 𝒫 𝐴 𝐴 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
1110ex 412 . . . . 5 (𝒫 𝒫 𝐴 𝐴 → ( 𝐴 ≺ 𝒫 𝒫 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
123, 9, 11syl6ci 71 . . . 4 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
132, 12syl5 34 . . 3 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
141, 13mtoi 199 . 2 ( 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
15 elex 3468 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ∈ V)
16 pwexb 7742 . . . . 5 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
175, 16bitri 275 . . . 4 ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
1815, 17sylibr 234 . . 3 (𝒫 𝒫 𝐴𝐴 𝐴 ∈ V)
1918con3i 154 . 2 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
2014, 19pm2.61i 182 1 ¬ 𝒫 𝒫 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2109  Vcvv 3447  wss 3914  𝒫 cpw 4563   cuni 4871   class class class wbr 5107  cdom 8916  csdm 8917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921
This theorem is referenced by:  mnfnre  11217
  Copyright terms: Public domain W3C validator