![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2pwuninel | Structured version Visualization version GIF version |
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.) |
Ref | Expression |
---|---|
2pwuninel | ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sdomirr 9110 | . . 3 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 | |
2 | elssuni 4940 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴) | |
3 | ssdomg 8992 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴)) | |
4 | canth2g 9127 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 ∪ 𝐴) | |
5 | pwexb 7749 | . . . . . . 7 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 ∪ 𝐴 ∈ V) | |
6 | canth2g 9127 | . . . . . . 7 ⊢ (𝒫 ∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
7 | 5, 6 | sylbi 216 | . . . . . 6 ⊢ (∪ 𝐴 ∈ V → 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
8 | sdomtr 9111 | . . . . . 6 ⊢ ((∪ 𝐴 ≺ 𝒫 ∪ 𝐴 ∧ 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
9 | 4, 7, 8 | syl2anc 584 | . . . . 5 ⊢ (∪ 𝐴 ∈ V → ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) |
10 | domsdomtr 9108 | . . . . . 6 ⊢ ((𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 ∧ ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴) | |
11 | 10 | ex 413 | . . . . 5 ⊢ (𝒫 𝒫 ∪ 𝐴 ≼ ∪ 𝐴 → (∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
12 | 3, 9, 11 | syl6ci 71 | . . . 4 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ⊆ ∪ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
13 | 2, 12 | syl5 34 | . . 3 ⊢ (∪ 𝐴 ∈ V → (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ≺ 𝒫 𝒫 ∪ 𝐴)) |
14 | 1, 13 | mtoi 198 | . 2 ⊢ (∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
15 | elex 3492 | . . . 4 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
16 | pwexb 7749 | . . . . 5 ⊢ (𝒫 ∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) | |
17 | 5, 16 | bitri 274 | . . . 4 ⊢ (∪ 𝐴 ∈ V ↔ 𝒫 𝒫 ∪ 𝐴 ∈ V) |
18 | 15, 17 | sylibr 233 | . . 3 ⊢ (𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 → ∪ 𝐴 ∈ V) |
19 | 18 | con3i 154 | . 2 ⊢ (¬ ∪ 𝐴 ∈ V → ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴) |
20 | 14, 19 | pm2.61i 182 | 1 ⊢ ¬ 𝒫 𝒫 ∪ 𝐴 ∈ 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3947 𝒫 cpw 4601 ∪ cuni 4907 class class class wbr 5147 ≼ cdom 8933 ≺ csdm 8934 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 |
This theorem is referenced by: mnfnre 11253 |
Copyright terms: Public domain | W3C validator |