MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwuninel Structured version   Visualization version   GIF version

Theorem 2pwuninel 9155
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.)
Assertion
Ref Expression
2pwuninel ¬ 𝒫 𝒫 𝐴𝐴

Proof of Theorem 2pwuninel
StepHypRef Expression
1 sdomirr 9137 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 elssuni 4935 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 𝐴)
3 ssdomg 9019 . . . . 5 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 𝐴))
4 canth2g 9154 . . . . . 6 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
5 pwexb 7766 . . . . . . 7 ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
6 canth2g 9154 . . . . . . 7 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
75, 6sylbi 216 . . . . . 6 ( 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
8 sdomtr 9138 . . . . . 6 (( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
94, 7, 8syl2anc 582 . . . . 5 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝒫 𝐴)
10 domsdomtr 9135 . . . . . 6 ((𝒫 𝒫 𝐴 𝐴 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
1110ex 411 . . . . 5 (𝒫 𝒫 𝐴 𝐴 → ( 𝐴 ≺ 𝒫 𝒫 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
123, 9, 11syl6ci 71 . . . 4 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
132, 12syl5 34 . . 3 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
141, 13mtoi 198 . 2 ( 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
15 elex 3482 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ∈ V)
16 pwexb 7766 . . . . 5 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
175, 16bitri 274 . . . 4 ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
1815, 17sylibr 233 . . 3 (𝒫 𝒫 𝐴𝐴 𝐴 ∈ V)
1918con3i 154 . 2 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
2014, 19pm2.61i 182 1 ¬ 𝒫 𝒫 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2098  Vcvv 3463  wss 3939  𝒫 cpw 4598   cuni 4903   class class class wbr 5143  cdom 8960  csdm 8961
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965
This theorem is referenced by:  mnfnre  11287
  Copyright terms: Public domain W3C validator