MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwuninel Structured version   Visualization version   GIF version

Theorem 2pwuninel 9128
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.)
Assertion
Ref Expression
2pwuninel ¬ 𝒫 𝒫 𝐴𝐴

Proof of Theorem 2pwuninel
StepHypRef Expression
1 sdomirr 9110 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 elssuni 4940 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 𝐴)
3 ssdomg 8992 . . . . 5 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 𝐴))
4 canth2g 9127 . . . . . 6 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
5 pwexb 7749 . . . . . . 7 ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
6 canth2g 9127 . . . . . . 7 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
75, 6sylbi 216 . . . . . 6 ( 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
8 sdomtr 9111 . . . . . 6 (( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
94, 7, 8syl2anc 584 . . . . 5 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝒫 𝐴)
10 domsdomtr 9108 . . . . . 6 ((𝒫 𝒫 𝐴 𝐴 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
1110ex 413 . . . . 5 (𝒫 𝒫 𝐴 𝐴 → ( 𝐴 ≺ 𝒫 𝒫 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
123, 9, 11syl6ci 71 . . . 4 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
132, 12syl5 34 . . 3 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
141, 13mtoi 198 . 2 ( 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
15 elex 3492 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ∈ V)
16 pwexb 7749 . . . . 5 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
175, 16bitri 274 . . . 4 ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
1815, 17sylibr 233 . . 3 (𝒫 𝒫 𝐴𝐴 𝐴 ∈ V)
1918con3i 154 . 2 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
2014, 19pm2.61i 182 1 ¬ 𝒫 𝒫 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2106  Vcvv 3474  wss 3947  𝒫 cpw 4601   cuni 4907   class class class wbr 5147  cdom 8933  csdm 8934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938
This theorem is referenced by:  mnfnre  11253
  Copyright terms: Public domain W3C validator