MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2pwuninel Structured version   Visualization version   GIF version

Theorem 2pwuninel 8868
Description: The power set of the power set of the union of a set does not belong to the set. This theorem provides a way of constructing a new set that doesn't belong to a given set. (Contributed by NM, 27-Jun-2008.)
Assertion
Ref Expression
2pwuninel ¬ 𝒫 𝒫 𝐴𝐴

Proof of Theorem 2pwuninel
StepHypRef Expression
1 sdomirr 8850 . . 3 ¬ 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴
2 elssuni 4868 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 𝐴)
3 ssdomg 8741 . . . . 5 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 𝐴))
4 canth2g 8867 . . . . . 6 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝐴)
5 pwexb 7594 . . . . . . 7 ( 𝐴 ∈ V ↔ 𝒫 𝐴 ∈ V)
6 canth2g 8867 . . . . . . 7 (𝒫 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
75, 6sylbi 216 . . . . . 6 ( 𝐴 ∈ V → 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
8 sdomtr 8851 . . . . . 6 (( 𝐴 ≺ 𝒫 𝐴 ∧ 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝐴 ≺ 𝒫 𝒫 𝐴)
94, 7, 8syl2anc 583 . . . . 5 ( 𝐴 ∈ V → 𝐴 ≺ 𝒫 𝒫 𝐴)
10 domsdomtr 8848 . . . . . 6 ((𝒫 𝒫 𝐴 𝐴 𝐴 ≺ 𝒫 𝒫 𝐴) → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴)
1110ex 412 . . . . 5 (𝒫 𝒫 𝐴 𝐴 → ( 𝐴 ≺ 𝒫 𝒫 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
123, 9, 11syl6ci 71 . . . 4 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴 𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
132, 12syl5 34 . . 3 ( 𝐴 ∈ V → (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ≺ 𝒫 𝒫 𝐴))
141, 13mtoi 198 . 2 ( 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
15 elex 3440 . . . 4 (𝒫 𝒫 𝐴𝐴 → 𝒫 𝒫 𝐴 ∈ V)
16 pwexb 7594 . . . . 5 (𝒫 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
175, 16bitri 274 . . . 4 ( 𝐴 ∈ V ↔ 𝒫 𝒫 𝐴 ∈ V)
1815, 17sylibr 233 . . 3 (𝒫 𝒫 𝐴𝐴 𝐴 ∈ V)
1918con3i 154 . 2 𝐴 ∈ V → ¬ 𝒫 𝒫 𝐴𝐴)
2014, 19pm2.61i 182 1 ¬ 𝒫 𝒫 𝐴𝐴
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836   class class class wbr 5070  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  mnfnre  10949
  Copyright terms: Public domain W3C validator