MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubl Structured version   Visualization version   GIF version

Theorem caubl 24377
Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (𝜑𝐷 ∈ (∞Met‘𝑋))
caubl.3 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
caubl.4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
caubl.5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
Assertion
Ref Expression
caubl (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Distinct variable groups:   𝑛,𝑟,𝐷   𝑛,𝐹,𝑟   𝜑,𝑟   𝑛,𝑋,𝑟   𝜑,𝑛

Proof of Theorem caubl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 caubl.5 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
2 2fveq3 6761 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑛)))
32sseq1d 3948 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
43imbi2d 340 . . . . . . . . . . 11 (𝑟 = 𝑛 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
5 2fveq3 6761 . . . . . . . . . . . . 13 (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑘)))
65sseq1d 3948 . . . . . . . . . . . 12 (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
76imbi2d 340 . . . . . . . . . . 11 (𝑟 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
8 2fveq3 6761 . . . . . . . . . . . . 13 (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
98sseq1d 3948 . . . . . . . . . . . 12 (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
109imbi2d 340 . . . . . . . . . . 11 (𝑟 = (𝑘 + 1) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
11 ssid 3939 . . . . . . . . . . . 12 ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))
12112a1i 12 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
13 caubl.4 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
14 eluznn 12587 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
15 fvoveq1 7278 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1615fveq2d 6760 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
17 2fveq3 6761 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘(𝐹𝑘)))
1816, 17sseq12d 3950 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘))))
1918rspccva 3551 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2013, 14, 19syl2an 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2120anassrs 467 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
22 sstr2 3924 . . . . . . . . . . . . . 14 (((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2423expcom 413 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
2524a2d 29 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑛) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
264, 7, 10, 7, 12, 25uzind4 12575 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2726com12 32 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2827ad2ant2r 743 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
29 relxp 5598 . . . . . . . . . . . . . . . 16 Rel (𝑋 × ℝ+)
30 caubl.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
3130ad3antrrr 726 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶(𝑋 × ℝ+))
32 simplrl 773 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
3331, 32ffvelrnd 6944 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ (𝑋 × ℝ+))
34 1st2nd 7853 . . . . . . . . . . . . . . . 16 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑛) ∈ (𝑋 × ℝ+)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3529, 33, 34sylancr 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3635fveq2d 6760 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
37 df-ov 7258 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3836, 37eqtr4di 2797 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))))
39 caubl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (∞Met‘𝑋))
4039ad3antrrr 726 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐷 ∈ (∞Met‘𝑋))
41 xp1st 7836 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
4233, 41syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
43 xp2nd 7837 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4433, 43syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4544rpxrd 12702 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
46 simpllr 772 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ+)
4746rpxrd 12702 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ*)
48 simplrr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) < 𝑟)
49 rpre 12667 . . . . . . . . . . . . . . . . 17 ((2nd ‘(𝐹𝑛)) ∈ ℝ+ → (2nd ‘(𝐹𝑛)) ∈ ℝ)
50 rpre 12667 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
51 ltle 10994 . . . . . . . . . . . . . . . . 17 (((2nd ‘(𝐹𝑛)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5249, 50, 51syl2an 595 . . . . . . . . . . . . . . . 16 (((2nd ‘(𝐹𝑛)) ∈ ℝ+𝑟 ∈ ℝ+) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5344, 46, 52syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5448, 53mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ≤ 𝑟)
55 ssbl 23484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑛)) ∈ 𝑋) ∧ ((2nd ‘(𝐹𝑛)) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (2nd ‘(𝐹𝑛)) ≤ 𝑟) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5640, 42, 45, 47, 54, 55syl221anc 1379 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5738, 56eqsstrd 3955 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
58 sstr2 3924 . . . . . . . . . . . 12 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
5957, 58syl5com 31 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
60 simprl 767 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → 𝑛 ∈ ℕ)
6160, 14sylan 579 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
6231, 61ffvelrnd 6944 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (𝑋 × ℝ+))
63 xp1st 7836 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
65 xp2nd 7837 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
6662, 65syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
67 blcntr 23474 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ+) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
6840, 64, 66, 67syl3anc 1369 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
69 1st2nd 7853 . . . . . . . . . . . . . . 15 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑘) ∈ (𝑋 × ℝ+)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7029, 62, 69sylancr 586 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7170fveq2d 6760 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
72 df-ov 7258 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7371, 72eqtr4di 2797 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
7468, 73eleqtrrd 2842 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)))
75 ssel 3910 . . . . . . . . . . 11 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
7659, 74, 75syl6ci 71 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
77 elbl2 23451 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ ((1st ‘(𝐹𝑛)) ∈ 𝑋 ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7840, 47, 42, 64, 77syl22anc 835 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7976, 78sylibd 238 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8079ex 412 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)))
8128, 80mpdd 43 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8281ralrimiv 3106 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
8382expr 456 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8483reximdva 3202 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8584ralimdva 3102 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
861, 85mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
87 nnuz 12550 . . 3 ℕ = (ℤ‘1)
88 1zzd 12281 . . 3 (𝜑 → 1 ∈ ℤ)
89 fvco3 6849 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
9030, 89sylan 579 . . 3 ((𝜑𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
91 fvco3 6849 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
9230, 91sylan 579 . . 3 ((𝜑𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
93 1stcof 7834 . . . 4 (𝐹:ℕ⟶(𝑋 × ℝ+) → (1st𝐹):ℕ⟶𝑋)
9430, 93syl 17 . . 3 (𝜑 → (1st𝐹):ℕ⟶𝑋)
9587, 39, 88, 90, 92, 94iscauf 24349 . 2 (𝜑 → ((1st𝐹) ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
9686, 95mpbird 256 1 (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  wrex 3064  wss 3883  cop 4564   class class class wbr 5070   × cxp 5578  ccom 5584  Rel wrel 5585  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  cr 10801  1c1 10803   + caddc 10805  *cxr 10939   < clt 10940  cle 10941  cn 11903  cz 12249  cuz 12511  +crp 12659  ∞Metcxmet 20495  ballcbl 20497  Cauccau 24322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-psmet 20502  df-xmet 20503  df-bl 20505  df-cau 24325
This theorem is referenced by:  bcthlem4  24396  heiborlem9  35904
  Copyright terms: Public domain W3C validator