MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubl Structured version   Visualization version   GIF version

Theorem caubl 23913
Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (𝜑𝐷 ∈ (∞Met‘𝑋))
caubl.3 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
caubl.4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
caubl.5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
Assertion
Ref Expression
caubl (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Distinct variable groups:   𝑛,𝑟,𝐷   𝑛,𝐹,𝑟   𝜑,𝑟   𝑛,𝑋,𝑟   𝜑,𝑛

Proof of Theorem caubl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 caubl.5 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
2 2fveq3 6677 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑛)))
32sseq1d 4000 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
43imbi2d 343 . . . . . . . . . . 11 (𝑟 = 𝑛 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
5 2fveq3 6677 . . . . . . . . . . . . 13 (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑘)))
65sseq1d 4000 . . . . . . . . . . . 12 (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
76imbi2d 343 . . . . . . . . . . 11 (𝑟 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
8 2fveq3 6677 . . . . . . . . . . . . 13 (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
98sseq1d 4000 . . . . . . . . . . . 12 (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
109imbi2d 343 . . . . . . . . . . 11 (𝑟 = (𝑘 + 1) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
11 ssid 3991 . . . . . . . . . . . 12 ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))
12112a1i 12 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
13 caubl.4 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
14 eluznn 12321 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
15 fvoveq1 7181 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1615fveq2d 6676 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
17 2fveq3 6677 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘(𝐹𝑘)))
1816, 17sseq12d 4002 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘))))
1918rspccva 3624 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2013, 14, 19syl2an 597 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2120anassrs 470 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
22 sstr2 3976 . . . . . . . . . . . . . 14 (((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2423expcom 416 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
2524a2d 29 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑛) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
264, 7, 10, 7, 12, 25uzind4 12309 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2726com12 32 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2827ad2ant2r 745 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
29 relxp 5575 . . . . . . . . . . . . . . . 16 Rel (𝑋 × ℝ+)
30 caubl.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
3130ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶(𝑋 × ℝ+))
32 simplrl 775 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
3331, 32ffvelrnd 6854 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ (𝑋 × ℝ+))
34 1st2nd 7740 . . . . . . . . . . . . . . . 16 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑛) ∈ (𝑋 × ℝ+)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3529, 33, 34sylancr 589 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3635fveq2d 6676 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
37 df-ov 7161 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3836, 37syl6eqr 2876 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))))
39 caubl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (∞Met‘𝑋))
4039ad3antrrr 728 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐷 ∈ (∞Met‘𝑋))
41 xp1st 7723 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
4233, 41syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
43 xp2nd 7724 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4433, 43syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4544rpxrd 12435 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
46 simpllr 774 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ+)
4746rpxrd 12435 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ*)
48 simplrr 776 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) < 𝑟)
49 rpre 12400 . . . . . . . . . . . . . . . . 17 ((2nd ‘(𝐹𝑛)) ∈ ℝ+ → (2nd ‘(𝐹𝑛)) ∈ ℝ)
50 rpre 12400 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
51 ltle 10731 . . . . . . . . . . . . . . . . 17 (((2nd ‘(𝐹𝑛)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5249, 50, 51syl2an 597 . . . . . . . . . . . . . . . 16 (((2nd ‘(𝐹𝑛)) ∈ ℝ+𝑟 ∈ ℝ+) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5344, 46, 52syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5448, 53mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ≤ 𝑟)
55 ssbl 23035 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑛)) ∈ 𝑋) ∧ ((2nd ‘(𝐹𝑛)) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (2nd ‘(𝐹𝑛)) ≤ 𝑟) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5640, 42, 45, 47, 54, 55syl221anc 1377 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5738, 56eqsstrd 4007 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
58 sstr2 3976 . . . . . . . . . . . 12 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
5957, 58syl5com 31 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
60 simprl 769 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → 𝑛 ∈ ℕ)
6160, 14sylan 582 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
6231, 61ffvelrnd 6854 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (𝑋 × ℝ+))
63 xp1st 7723 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
65 xp2nd 7724 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
6662, 65syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
67 blcntr 23025 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ+) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
6840, 64, 66, 67syl3anc 1367 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
69 1st2nd 7740 . . . . . . . . . . . . . . 15 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑘) ∈ (𝑋 × ℝ+)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7029, 62, 69sylancr 589 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7170fveq2d 6676 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
72 df-ov 7161 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7371, 72syl6eqr 2876 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
7468, 73eleqtrrd 2918 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)))
75 ssel 3963 . . . . . . . . . . 11 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
7659, 74, 75syl6ci 71 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
77 elbl2 23002 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ ((1st ‘(𝐹𝑛)) ∈ 𝑋 ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7840, 47, 42, 64, 77syl22anc 836 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7976, 78sylibd 241 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8079ex 415 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)))
8128, 80mpdd 43 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8281ralrimiv 3183 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
8382expr 459 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8483reximdva 3276 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8584ralimdva 3179 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
861, 85mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
87 nnuz 12284 . . 3 ℕ = (ℤ‘1)
88 1zzd 12016 . . 3 (𝜑 → 1 ∈ ℤ)
89 fvco3 6762 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
9030, 89sylan 582 . . 3 ((𝜑𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
91 fvco3 6762 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
9230, 91sylan 582 . . 3 ((𝜑𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
93 1stcof 7721 . . . 4 (𝐹:ℕ⟶(𝑋 × ℝ+) → (1st𝐹):ℕ⟶𝑋)
9430, 93syl 17 . . 3 (𝜑 → (1st𝐹):ℕ⟶𝑋)
9587, 39, 88, 90, 92, 94iscauf 23885 . 2 (𝜑 → ((1st𝐹) ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
9686, 95mpbird 259 1 (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  wss 3938  cop 4575   class class class wbr 5068   × cxp 5555  ccom 5561  Rel wrel 5562  wf 6353  cfv 6357  (class class class)co 7158  1st c1st 7689  2nd c2nd 7690  cr 10538  1c1 10540   + caddc 10542  *cxr 10676   < clt 10677  cle 10678  cn 11640  cz 11984  cuz 12246  +crp 12392  ∞Metcxmet 20532  ballcbl 20534  Cauccau 23858
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-xneg 12510  df-xadd 12511  df-xmul 12512  df-psmet 20539  df-xmet 20540  df-bl 20542  df-cau 23861
This theorem is referenced by:  bcthlem4  23932  heiborlem9  35099
  Copyright terms: Public domain W3C validator