MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubl Structured version   Visualization version   GIF version

Theorem caubl 25215
Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (𝜑𝐷 ∈ (∞Met‘𝑋))
caubl.3 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
caubl.4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
caubl.5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
Assertion
Ref Expression
caubl (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Distinct variable groups:   𝑛,𝑟,𝐷   𝑛,𝐹,𝑟   𝜑,𝑟   𝑛,𝑋,𝑟   𝜑,𝑛

Proof of Theorem caubl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 caubl.5 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
2 2fveq3 6866 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑛)))
32sseq1d 3981 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
43imbi2d 340 . . . . . . . . . . 11 (𝑟 = 𝑛 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
5 2fveq3 6866 . . . . . . . . . . . . 13 (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑘)))
65sseq1d 3981 . . . . . . . . . . . 12 (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
76imbi2d 340 . . . . . . . . . . 11 (𝑟 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
8 2fveq3 6866 . . . . . . . . . . . . 13 (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
98sseq1d 3981 . . . . . . . . . . . 12 (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
109imbi2d 340 . . . . . . . . . . 11 (𝑟 = (𝑘 + 1) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
11 ssid 3972 . . . . . . . . . . . 12 ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))
12112a1i 12 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
13 caubl.4 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
14 eluznn 12884 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
15 fvoveq1 7413 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1615fveq2d 6865 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
17 2fveq3 6866 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘(𝐹𝑘)))
1816, 17sseq12d 3983 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘))))
1918rspccva 3590 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2013, 14, 19syl2an 596 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2120anassrs 467 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
22 sstr2 3956 . . . . . . . . . . . . . 14 (((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2423expcom 413 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
2524a2d 29 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑛) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
264, 7, 10, 7, 12, 25uzind4 12872 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2726com12 32 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2827ad2ant2r 747 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
29 relxp 5659 . . . . . . . . . . . . . . . 16 Rel (𝑋 × ℝ+)
30 caubl.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
3130ad3antrrr 730 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶(𝑋 × ℝ+))
32 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
3331, 32ffvelcdmd 7060 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ (𝑋 × ℝ+))
34 1st2nd 8021 . . . . . . . . . . . . . . . 16 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑛) ∈ (𝑋 × ℝ+)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3529, 33, 34sylancr 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3635fveq2d 6865 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
37 df-ov 7393 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3836, 37eqtr4di 2783 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))))
39 caubl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (∞Met‘𝑋))
4039ad3antrrr 730 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐷 ∈ (∞Met‘𝑋))
41 xp1st 8003 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
4233, 41syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
43 xp2nd 8004 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4433, 43syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4544rpxrd 13003 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
46 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ+)
4746rpxrd 13003 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ*)
48 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) < 𝑟)
49 rpre 12967 . . . . . . . . . . . . . . . . 17 ((2nd ‘(𝐹𝑛)) ∈ ℝ+ → (2nd ‘(𝐹𝑛)) ∈ ℝ)
50 rpre 12967 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
51 ltle 11269 . . . . . . . . . . . . . . . . 17 (((2nd ‘(𝐹𝑛)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5249, 50, 51syl2an 596 . . . . . . . . . . . . . . . 16 (((2nd ‘(𝐹𝑛)) ∈ ℝ+𝑟 ∈ ℝ+) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5344, 46, 52syl2anc 584 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5448, 53mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ≤ 𝑟)
55 ssbl 24318 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑛)) ∈ 𝑋) ∧ ((2nd ‘(𝐹𝑛)) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (2nd ‘(𝐹𝑛)) ≤ 𝑟) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5640, 42, 45, 47, 54, 55syl221anc 1383 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5738, 56eqsstrd 3984 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
58 sstr2 3956 . . . . . . . . . . . 12 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
5957, 58syl5com 31 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
60 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → 𝑛 ∈ ℕ)
6160, 14sylan 580 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
6231, 61ffvelcdmd 7060 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (𝑋 × ℝ+))
63 xp1st 8003 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
65 xp2nd 8004 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
6662, 65syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
67 blcntr 24308 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ+) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
6840, 64, 66, 67syl3anc 1373 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
69 1st2nd 8021 . . . . . . . . . . . . . . 15 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑘) ∈ (𝑋 × ℝ+)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7029, 62, 69sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7170fveq2d 6865 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
72 df-ov 7393 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7371, 72eqtr4di 2783 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
7468, 73eleqtrrd 2832 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)))
75 ssel 3943 . . . . . . . . . . 11 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
7659, 74, 75syl6ci 71 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
77 elbl2 24285 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ ((1st ‘(𝐹𝑛)) ∈ 𝑋 ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7840, 47, 42, 64, 77syl22anc 838 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7976, 78sylibd 239 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8079ex 412 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)))
8128, 80mpdd 43 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8281ralrimiv 3125 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
8382expr 456 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8483reximdva 3147 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8584ralimdva 3146 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
861, 85mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
87 nnuz 12843 . . 3 ℕ = (ℤ‘1)
88 1zzd 12571 . . 3 (𝜑 → 1 ∈ ℤ)
89 fvco3 6963 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
9030, 89sylan 580 . . 3 ((𝜑𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
91 fvco3 6963 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
9230, 91sylan 580 . . 3 ((𝜑𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
93 1stcof 8001 . . . 4 (𝐹:ℕ⟶(𝑋 × ℝ+) → (1st𝐹):ℕ⟶𝑋)
9430, 93syl 17 . . 3 (𝜑 → (1st𝐹):ℕ⟶𝑋)
9587, 39, 88, 90, 92, 94iscauf 25187 . 2 (𝜑 → ((1st𝐹) ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
9686, 95mpbird 257 1 (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054  wss 3917  cop 4598   class class class wbr 5110   × cxp 5639  ccom 5645  Rel wrel 5646  wf 6510  cfv 6514  (class class class)co 7390  1st c1st 7969  2nd c2nd 7970  cr 11074  1c1 11076   + caddc 11078  *cxr 11214   < clt 11215  cle 11216  cn 12193  cz 12536  cuz 12800  +crp 12958  ∞Metcxmet 21256  ballcbl 21258  Cauccau 25160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-map 8804  df-pm 8805  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-psmet 21263  df-xmet 21264  df-bl 21266  df-cau 25163
This theorem is referenced by:  bcthlem4  25234  heiborlem9  37820
  Copyright terms: Public domain W3C validator