MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubl Structured version   Visualization version   GIF version

Theorem caubl 25361
Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2 (𝜑𝐷 ∈ (∞Met‘𝑋))
caubl.3 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
caubl.4 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
caubl.5 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
Assertion
Ref Expression
caubl (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Distinct variable groups:   𝑛,𝑟,𝐷   𝑛,𝐹,𝑟   𝜑,𝑟   𝑛,𝑋,𝑟   𝜑,𝑛

Proof of Theorem caubl
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 caubl.5 . . 3 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟)
2 2fveq3 6925 . . . . . . . . . . . . 13 (𝑟 = 𝑛 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑛)))
32sseq1d 4040 . . . . . . . . . . . 12 (𝑟 = 𝑛 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
43imbi2d 340 . . . . . . . . . . 11 (𝑟 = 𝑛 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
5 2fveq3 6925 . . . . . . . . . . . . 13 (𝑟 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹𝑘)))
65sseq1d 4040 . . . . . . . . . . . 12 (𝑟 = 𝑘 → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
76imbi2d 340 . . . . . . . . . . 11 (𝑟 = 𝑘 → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
8 2fveq3 6925 . . . . . . . . . . . . 13 (𝑟 = (𝑘 + 1) → ((ball‘𝐷)‘(𝐹𝑟)) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
98sseq1d 4040 . . . . . . . . . . . 12 (𝑟 = (𝑘 + 1) → (((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
109imbi2d 340 . . . . . . . . . . 11 (𝑟 = (𝑘 + 1) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑟)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) ↔ ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
11 ssid 4031 . . . . . . . . . . . 12 ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))
12112a1i 12 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
13 caubl.4 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))
14 eluznn 12983 . . . . . . . . . . . . . . . 16 ((𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
15 fvoveq1 7471 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑘 → (𝐹‘(𝑛 + 1)) = (𝐹‘(𝑘 + 1)))
1615fveq2d 6924 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) = ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))))
17 2fveq3 6925 . . . . . . . . . . . . . . . . . 18 (𝑛 = 𝑘 → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘(𝐹𝑘)))
1816, 17sseq12d 4042 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑘 → (((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ↔ ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘))))
1918rspccva 3634 . . . . . . . . . . . . . . . 16 ((∀𝑛 ∈ ℕ ((ball‘𝐷)‘(𝐹‘(𝑛 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) ∧ 𝑘 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2013, 14, 19syl2an 595 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑛 ∈ ℕ ∧ 𝑘 ∈ (ℤ𝑛))) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
2120anassrs 467 . . . . . . . . . . . . . 14 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)))
22 sstr2 4015 . . . . . . . . . . . . . 14 (((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑘)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2321, 22syl 17 . . . . . . . . . . . . 13 (((𝜑𝑛 ∈ ℕ) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2423expcom 413 . . . . . . . . . . . 12 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
2524a2d 29 . . . . . . . . . . 11 (𝑘 ∈ (ℤ𝑛) → (((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹‘(𝑘 + 1))) ⊆ ((ball‘𝐷)‘(𝐹𝑛)))))
264, 7, 10, 7, 12, 25uzind4 12971 . . . . . . . . . 10 (𝑘 ∈ (ℤ𝑛) → ((𝜑𝑛 ∈ ℕ) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2726com12 32 . . . . . . . . 9 ((𝜑𝑛 ∈ ℕ) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
2827ad2ant2r 746 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛))))
29 relxp 5718 . . . . . . . . . . . . . . . 16 Rel (𝑋 × ℝ+)
30 caubl.3 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹:ℕ⟶(𝑋 × ℝ+))
3130ad3antrrr 729 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐹:ℕ⟶(𝑋 × ℝ+))
32 simplrl 776 . . . . . . . . . . . . . . . . 17 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑛 ∈ ℕ)
3331, 32ffvelcdmd 7119 . . . . . . . . . . . . . . . 16 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) ∈ (𝑋 × ℝ+))
34 1st2nd 8080 . . . . . . . . . . . . . . . 16 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑛) ∈ (𝑋 × ℝ+)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3529, 33, 34sylancr 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑛) = ⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3635fveq2d 6924 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩))
37 df-ov 7451 . . . . . . . . . . . . . 14 ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑛)), (2nd ‘(𝐹𝑛))⟩)
3836, 37eqtr4di 2798 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) = ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))))
39 caubl.2 . . . . . . . . . . . . . . 15 (𝜑𝐷 ∈ (∞Met‘𝑋))
4039ad3antrrr 729 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝐷 ∈ (∞Met‘𝑋))
41 xp1st 8062 . . . . . . . . . . . . . . 15 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
4233, 41syl 17 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑛)) ∈ 𝑋)
43 xp2nd 8063 . . . . . . . . . . . . . . . 16 ((𝐹𝑛) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4433, 43syl 17 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ+)
4544rpxrd 13100 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ∈ ℝ*)
46 simpllr 775 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ+)
4746rpxrd 13100 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑟 ∈ ℝ*)
48 simplrr 777 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) < 𝑟)
49 rpre 13065 . . . . . . . . . . . . . . . . 17 ((2nd ‘(𝐹𝑛)) ∈ ℝ+ → (2nd ‘(𝐹𝑛)) ∈ ℝ)
50 rpre 13065 . . . . . . . . . . . . . . . . 17 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
51 ltle 11378 . . . . . . . . . . . . . . . . 17 (((2nd ‘(𝐹𝑛)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5249, 50, 51syl2an 595 . . . . . . . . . . . . . . . 16 (((2nd ‘(𝐹𝑛)) ∈ ℝ+𝑟 ∈ ℝ+) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5344, 46, 52syl2anc 583 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((2nd ‘(𝐹𝑛)) < 𝑟 → (2nd ‘(𝐹𝑛)) ≤ 𝑟))
5448, 53mpd 15 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑛)) ≤ 𝑟)
55 ssbl 24454 . . . . . . . . . . . . . 14 (((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑛)) ∈ 𝑋) ∧ ((2nd ‘(𝐹𝑛)) ∈ ℝ*𝑟 ∈ ℝ*) ∧ (2nd ‘(𝐹𝑛)) ≤ 𝑟) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5640, 42, 45, 47, 54, 55syl221anc 1381 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑛))(ball‘𝐷)(2nd ‘(𝐹𝑛))) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
5738, 56eqsstrd 4047 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟))
58 sstr2 4015 . . . . . . . . . . . 12 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (((ball‘𝐷)‘(𝐹𝑛)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
5957, 58syl5com 31 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
60 simprl 770 . . . . . . . . . . . . . . . 16 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → 𝑛 ∈ ℕ)
6160, 14sylan 579 . . . . . . . . . . . . . . 15 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → 𝑘 ∈ ℕ)
6231, 61ffvelcdmd 7119 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) ∈ (𝑋 × ℝ+))
63 xp1st 8062 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
6462, 63syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ 𝑋)
65 xp2nd 8063 . . . . . . . . . . . . . 14 ((𝐹𝑘) ∈ (𝑋 × ℝ+) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
6662, 65syl 17 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (2nd ‘(𝐹𝑘)) ∈ ℝ+)
67 blcntr 24444 . . . . . . . . . . . . 13 ((𝐷 ∈ (∞Met‘𝑋) ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋 ∧ (2nd ‘(𝐹𝑘)) ∈ ℝ+) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
6840, 64, 66, 67syl3anc 1371 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
69 1st2nd 8080 . . . . . . . . . . . . . . 15 ((Rel (𝑋 × ℝ+) ∧ (𝐹𝑘) ∈ (𝑋 × ℝ+)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7029, 62, 69sylancr 586 . . . . . . . . . . . . . 14 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (𝐹𝑘) = ⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7170fveq2d 6924 . . . . . . . . . . . . 13 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩))
72 df-ov 7451 . . . . . . . . . . . . 13 ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))) = ((ball‘𝐷)‘⟨(1st ‘(𝐹𝑘)), (2nd ‘(𝐹𝑘))⟩)
7371, 72eqtr4di 2798 . . . . . . . . . . . 12 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((ball‘𝐷)‘(𝐹𝑘)) = ((1st ‘(𝐹𝑘))(ball‘𝐷)(2nd ‘(𝐹𝑘))))
7468, 73eleqtrrd 2847 . . . . . . . . . . 11 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)))
75 ssel 4002 . . . . . . . . . . 11 (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) → ((1st ‘(𝐹𝑘)) ∈ ((ball‘𝐷)‘(𝐹𝑘)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
7659, 74, 75syl6ci 71 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → (1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟)))
77 elbl2 24421 . . . . . . . . . . 11 (((𝐷 ∈ (∞Met‘𝑋) ∧ 𝑟 ∈ ℝ*) ∧ ((1st ‘(𝐹𝑛)) ∈ 𝑋 ∧ (1st ‘(𝐹𝑘)) ∈ 𝑋)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7840, 47, 42, 64, 77syl22anc 838 . . . . . . . . . 10 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → ((1st ‘(𝐹𝑘)) ∈ ((1st ‘(𝐹𝑛))(ball‘𝐷)𝑟) ↔ ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
7976, 78sylibd 239 . . . . . . . . 9 ((((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) ∧ 𝑘 ∈ (ℤ𝑛)) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8079ex 412 . . . . . . . 8 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → (((ball‘𝐷)‘(𝐹𝑘)) ⊆ ((ball‘𝐷)‘(𝐹𝑛)) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)))
8128, 80mpdd 43 . . . . . . 7 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → (𝑘 ∈ (ℤ𝑛) → ((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8281ralrimiv 3151 . . . . . 6 (((𝜑𝑟 ∈ ℝ+) ∧ (𝑛 ∈ ℕ ∧ (2nd ‘(𝐹𝑛)) < 𝑟)) → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
8382expr 456 . . . . 5 (((𝜑𝑟 ∈ ℝ+) ∧ 𝑛 ∈ ℕ) → ((2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8483reximdva 3174 . . . 4 ((𝜑𝑟 ∈ ℝ+) → (∃𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∃𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
8584ralimdva 3173 . . 3 (𝜑 → (∀𝑟 ∈ ℝ+𝑛 ∈ ℕ (2nd ‘(𝐹𝑛)) < 𝑟 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
861, 85mpd 15 . 2 (𝜑 → ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟)
87 nnuz 12946 . . 3 ℕ = (ℤ‘1)
88 1zzd 12674 . . 3 (𝜑 → 1 ∈ ℤ)
89 fvco3 7021 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
9030, 89sylan 579 . . 3 ((𝜑𝑘 ∈ ℕ) → ((1st𝐹)‘𝑘) = (1st ‘(𝐹𝑘)))
91 fvco3 7021 . . . 4 ((𝐹:ℕ⟶(𝑋 × ℝ+) ∧ 𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
9230, 91sylan 579 . . 3 ((𝜑𝑛 ∈ ℕ) → ((1st𝐹)‘𝑛) = (1st ‘(𝐹𝑛)))
93 1stcof 8060 . . . 4 (𝐹:ℕ⟶(𝑋 × ℝ+) → (1st𝐹):ℕ⟶𝑋)
9430, 93syl 17 . . 3 (𝜑 → (1st𝐹):ℕ⟶𝑋)
9587, 39, 88, 90, 92, 94iscauf 25333 . 2 (𝜑 → ((1st𝐹) ∈ (Cau‘𝐷) ↔ ∀𝑟 ∈ ℝ+𝑛 ∈ ℕ ∀𝑘 ∈ (ℤ𝑛)((1st ‘(𝐹𝑛))𝐷(1st ‘(𝐹𝑘))) < 𝑟))
9686, 95mpbird 257 1 (𝜑 → (1st𝐹) ∈ (Cau‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  wrex 3076  wss 3976  cop 4654   class class class wbr 5166   × cxp 5698  ccom 5704  Rel wrel 5705  wf 6569  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  cr 11183  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cn 12293  cz 12639  cuz 12903  +crp 13057  ∞Metcxmet 21372  ballcbl 21374  Cauccau 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-psmet 21379  df-xmet 21380  df-bl 21382  df-cau 25309
This theorem is referenced by:  bcthlem4  25380  heiborlem9  37779
  Copyright terms: Public domain W3C validator