Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cbv Structured version   Visualization version   GIF version

Theorem tendo0cbv 39960
Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.)
Hypothesis
Ref Expression
tendo0cbv.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0cbv 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Distinct variable groups:   𝐵,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑂(𝑓,𝑔)

Proof of Theorem tendo0cbv
StepHypRef Expression
1 tendo0cbv.o . 2 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 eqidd 2731 . . 3 (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
32cbvmptv 5260 . 2 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑔𝑇 ↦ ( I ↾ 𝐵))
41, 3eqtri 2758 1 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cmpt 5230   I cid 5572  cres 5677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2701
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2722  df-clel 2808  df-rab 3431  df-v 3474  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-opab 5210  df-mpt 5231
This theorem is referenced by:  tendo02  39961  tendo0cl  39964
  Copyright terms: Public domain W3C validator