![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cbv | Structured version Visualization version GIF version |
Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo0cbv | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0cbv.o | . 2 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
2 | eqidd 2731 | . . 3 ⊢ (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
3 | 2 | cbvmptv 5260 | . 2 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
4 | 1, 3 | eqtri 2758 | 1 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5230 I cid 5572 ↾ cres 5677 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2722 df-clel 2808 df-rab 3431 df-v 3474 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-sn 4628 df-pr 4630 df-op 4634 df-opab 5210 df-mpt 5231 |
This theorem is referenced by: tendo02 39961 tendo0cl 39964 |
Copyright terms: Public domain | W3C validator |