Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cbv Structured version   Visualization version   GIF version

Theorem tendo0cbv 38800
Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.)
Hypothesis
Ref Expression
tendo0cbv.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0cbv 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Distinct variable groups:   𝐵,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑂(𝑓,𝑔)

Proof of Theorem tendo0cbv
StepHypRef Expression
1 tendo0cbv.o . 2 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 eqidd 2739 . . 3 (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
32cbvmptv 5187 . 2 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑔𝑇 ↦ ( I ↾ 𝐵))
41, 3eqtri 2766 1 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  cmpt 5157   I cid 5488  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-opab 5137  df-mpt 5158
This theorem is referenced by:  tendo02  38801  tendo0cl  38804
  Copyright terms: Public domain W3C validator