![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cbv | Structured version Visualization version GIF version |
Description: Define additive identity for trace-perserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo0cbv | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0cbv.o | . 2 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
2 | eqidd 2779 | . . 3 ⊢ (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
3 | 2 | cbvmptv 4985 | . 2 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
4 | 1, 3 | eqtri 2802 | 1 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1601 ↦ cmpt 4965 I cid 5260 ↾ cres 5357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-rab 3099 df-v 3400 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-nul 4142 df-if 4308 df-sn 4399 df-pr 4401 df-op 4405 df-opab 4949 df-mpt 4966 |
This theorem is referenced by: tendo02 36941 tendo0cl 36944 |
Copyright terms: Public domain | W3C validator |