| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cbv | Structured version Visualization version GIF version | ||
| Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo0cbv | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tendo0cbv.o | . 2 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 2 | eqidd 2730 | . . 3 ⊢ (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
| 3 | 2 | cbvmptv 5211 | . 2 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 4 | 1, 3 | eqtri 2752 | 1 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-opab 5170 df-mpt 5189 |
| This theorem is referenced by: tendo02 40781 tendo0cl 40784 |
| Copyright terms: Public domain | W3C validator |