Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cbv | Structured version Visualization version GIF version |
Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo0cbv | ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | tendo0cbv.o | . 2 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
2 | eqidd 2739 | . . 3 ⊢ (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
3 | 2 | cbvmptv 5187 | . 2 ⊢ (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
4 | 1, 3 | eqtri 2766 | 1 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1539 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-mpt 5158 |
This theorem is referenced by: tendo02 38801 tendo0cl 38804 |
Copyright terms: Public domain | W3C validator |