Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cbv Structured version   Visualization version   GIF version

Theorem tendo0cbv 40743
Description: Define additive identity for trace-preserving endomorphisms. Change bound variable to isolate it later. (Contributed by NM, 11-Jun-2013.)
Hypothesis
Ref Expression
tendo0cbv.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0cbv 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Distinct variable groups:   𝐵,𝑓,𝑔   𝑇,𝑓,𝑔
Allowed substitution hints:   𝑂(𝑓,𝑔)

Proof of Theorem tendo0cbv
StepHypRef Expression
1 tendo0cbv.o . 2 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
2 eqidd 2741 . . 3 (𝑓 = 𝑔 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
32cbvmptv 5279 . 2 (𝑓𝑇 ↦ ( I ↾ 𝐵)) = (𝑔𝑇 ↦ ( I ↾ 𝐵))
41, 3eqtri 2768 1 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1537  cmpt 5249   I cid 5592  cres 5702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-opab 5229  df-mpt 5250
This theorem is referenced by:  tendo02  40744  tendo0cl  40747
  Copyright terms: Public domain W3C validator