Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cl | Structured version Visualization version GIF version |
Description: The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
Ref | Expression |
---|---|
tendo0cl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
2 | tendo0.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | tendo0.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
4 | eqid 2738 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
5 | tendo0.e | . 2 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
6 | id 22 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
7 | tendo0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
8 | 7, 2, 3 | idltrn 38164 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
9 | 8 | adantr 481 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → ( I ↾ 𝐵) ∈ 𝑇) |
10 | tendo0.o | . . . 4 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
11 | 10 | tendo0cbv 38800 | . . 3 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
12 | 9, 11 | fmptd 6988 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂:𝑇⟶𝑇) |
13 | 7, 2, 3, 5, 10 | tendo0co2 38802 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑂‘(𝑔 ∘ ℎ)) = ((𝑂‘𝑔) ∘ (𝑂‘ℎ))) |
14 | 7, 2, 3, 5, 10, 1, 4 | tendo0tp 38803 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑂‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
15 | 1, 2, 3, 4, 5, 6, 12, 13, 14 | istendod 38776 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5157 I cid 5488 ↾ cres 5591 ‘cfv 6433 Basecbs 16912 lecple 16969 HLchlt 37364 LHypclh 37998 LTrncltrn 38115 trLctrl 38172 TEndoctendo 38766 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-riotaBAD 36967 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-undef 8089 df-map 8617 df-proset 18013 df-poset 18031 df-plt 18048 df-lub 18064 df-glb 18065 df-join 18066 df-meet 18067 df-p0 18143 df-p1 18144 df-lat 18150 df-clat 18217 df-oposet 37190 df-ol 37192 df-oml 37193 df-covers 37280 df-ats 37281 df-atl 37312 df-cvlat 37336 df-hlat 37365 df-llines 37512 df-lplanes 37513 df-lvols 37514 df-lines 37515 df-psubsp 37517 df-pmap 37518 df-padd 37810 df-lhyp 38002 df-laut 38003 df-ldil 38118 df-ltrn 38119 df-trl 38173 df-tendo 38769 |
This theorem is referenced by: tendo0pl 38805 tendo0plr 38806 tendoipl 38811 tendoid0 38839 tendo0mul 38840 tendo0mulr 38841 tendoex 38989 cdleml5N 38994 erngdvlem1 39002 erngdvlem4 39005 erng0g 39008 erngdvlem1-rN 39010 erngdvlem4-rN 39013 dvh0g 39125 dvhopN 39130 dib1dim 39179 dib1dim2 39182 dibss 39183 diblss 39184 diblsmopel 39185 dicn0 39206 cdlemn4 39212 cdlemn4a 39213 cdlemn6 39216 dihopelvalcpre 39262 dihmeetlem4preN 39320 dihatlat 39348 dihatexv 39352 |
Copyright terms: Public domain | W3C validator |