![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cl | Structured version Visualization version GIF version |
Description: The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013.) |
Ref | Expression |
---|---|
tendo0.b | β’ π΅ = (BaseβπΎ) |
tendo0.h | β’ π» = (LHypβπΎ) |
tendo0.t | β’ π = ((LTrnβπΎ)βπ) |
tendo0.e | β’ πΈ = ((TEndoβπΎ)βπ) |
tendo0.o | β’ π = (π β π β¦ ( I βΎ π΅)) |
Ref | Expression |
---|---|
tendo0cl | β’ ((πΎ β HL β§ π β π») β π β πΈ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . 2 β’ (leβπΎ) = (leβπΎ) | |
2 | tendo0.h | . 2 β’ π» = (LHypβπΎ) | |
3 | tendo0.t | . 2 β’ π = ((LTrnβπΎ)βπ) | |
4 | eqid 2732 | . 2 β’ ((trLβπΎ)βπ) = ((trLβπΎ)βπ) | |
5 | tendo0.e | . 2 β’ πΈ = ((TEndoβπΎ)βπ) | |
6 | id 22 | . 2 β’ ((πΎ β HL β§ π β π») β (πΎ β HL β§ π β π»)) | |
7 | tendo0.b | . . . . 5 β’ π΅ = (BaseβπΎ) | |
8 | 7, 2, 3 | idltrn 39016 | . . . 4 β’ ((πΎ β HL β§ π β π») β ( I βΎ π΅) β π) |
9 | 8 | adantr 481 | . . 3 β’ (((πΎ β HL β§ π β π») β§ π β π) β ( I βΎ π΅) β π) |
10 | tendo0.o | . . . 4 β’ π = (π β π β¦ ( I βΎ π΅)) | |
11 | 10 | tendo0cbv 39652 | . . 3 β’ π = (π β π β¦ ( I βΎ π΅)) |
12 | 9, 11 | fmptd 7113 | . 2 β’ ((πΎ β HL β§ π β π») β π:πβΆπ) |
13 | 7, 2, 3, 5, 10 | tendo0co2 39654 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β π β§ β β π) β (πβ(π β β)) = ((πβπ) β (πββ))) |
14 | 7, 2, 3, 5, 10, 1, 4 | tendo0tp 39655 | . 2 β’ (((πΎ β HL β§ π β π») β§ π β π) β (((trLβπΎ)βπ)β(πβπ))(leβπΎ)(((trLβπΎ)βπ)βπ)) |
15 | 1, 2, 3, 4, 5, 6, 12, 13, 14 | istendod 39628 | 1 β’ ((πΎ β HL β§ π β π») β π β πΈ) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β¦ cmpt 5231 I cid 5573 βΎ cres 5678 βcfv 6543 Basecbs 17143 lecple 17203 HLchlt 38215 LHypclh 38850 LTrncltrn 38967 trLctrl 39024 TEndoctendo 39618 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-riotaBAD 37818 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-1st 7974 df-2nd 7975 df-undef 8257 df-map 8821 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38041 df-ol 38043 df-oml 38044 df-covers 38131 df-ats 38132 df-atl 38163 df-cvlat 38187 df-hlat 38216 df-llines 38364 df-lplanes 38365 df-lvols 38366 df-lines 38367 df-psubsp 38369 df-pmap 38370 df-padd 38662 df-lhyp 38854 df-laut 38855 df-ldil 38970 df-ltrn 38971 df-trl 39025 df-tendo 39621 |
This theorem is referenced by: tendo0pl 39657 tendo0plr 39658 tendoipl 39663 tendoid0 39691 tendo0mul 39692 tendo0mulr 39693 tendoex 39841 cdleml5N 39846 erngdvlem1 39854 erngdvlem4 39857 erng0g 39860 erngdvlem1-rN 39862 erngdvlem4-rN 39865 dvh0g 39977 dvhopN 39982 dib1dim 40031 dib1dim2 40034 dibss 40035 diblss 40036 diblsmopel 40037 dicn0 40058 cdlemn4 40064 cdlemn4a 40065 cdlemn6 40068 dihopelvalcpre 40114 dihmeetlem4preN 40172 dihatlat 40200 dihatexv 40204 |
Copyright terms: Public domain | W3C validator |