Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo0cl Structured version   Visualization version   GIF version

Theorem tendo0cl 40757
Description: The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013.)
Hypotheses
Ref Expression
tendo0.b 𝐵 = (Base‘𝐾)
tendo0.h 𝐻 = (LHyp‘𝐾)
tendo0.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendo0.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendo0.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
Assertion
Ref Expression
tendo0cl ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐸(𝑓)   𝐻(𝑓)   𝐾(𝑓)   𝑂(𝑓)   𝑊(𝑓)

Proof of Theorem tendo0cl
Dummy variables 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . 2 (le‘𝐾) = (le‘𝐾)
2 tendo0.h . 2 𝐻 = (LHyp‘𝐾)
3 tendo0.t . 2 𝑇 = ((LTrn‘𝐾)‘𝑊)
4 eqid 2729 . 2 ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊)
5 tendo0.e . 2 𝐸 = ((TEndo‘𝐾)‘𝑊)
6 id 22 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → (𝐾 ∈ HL ∧ 𝑊𝐻))
7 tendo0.b . . . . 5 𝐵 = (Base‘𝐾)
87, 2, 3idltrn 40117 . . . 4 ((𝐾 ∈ HL ∧ 𝑊𝐻) → ( I ↾ 𝐵) ∈ 𝑇)
98adantr 480 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → ( I ↾ 𝐵) ∈ 𝑇)
10 tendo0.o . . . 4 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
1110tendo0cbv 40753 . . 3 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
129, 11fmptd 7068 . 2 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂:𝑇𝑇)
137, 2, 3, 5, 10tendo0co2 40755 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇𝑇) → (𝑂‘(𝑔)) = ((𝑂𝑔) ∘ (𝑂)))
147, 2, 3, 5, 10, 1, 4tendo0tp 40756 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑔𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑂𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔))
151, 2, 3, 4, 5, 6, 12, 13, 14istendod 40729 1 ((𝐾 ∈ HL ∧ 𝑊𝐻) → 𝑂𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  cmpt 5183   I cid 5525  cres 5633  cfv 6499  Basecbs 17155  lecple 17203  HLchlt 39316  LHypclh 39951  LTrncltrn 40068  trLctrl 40125  TEndoctendo 40719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-riotaBAD 38919
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-1st 7947  df-2nd 7948  df-undef 8229  df-map 8778  df-proset 18231  df-poset 18250  df-plt 18265  df-lub 18281  df-glb 18282  df-join 18283  df-meet 18284  df-p0 18360  df-p1 18361  df-lat 18367  df-clat 18434  df-oposet 39142  df-ol 39144  df-oml 39145  df-covers 39232  df-ats 39233  df-atl 39264  df-cvlat 39288  df-hlat 39317  df-llines 39465  df-lplanes 39466  df-lvols 39467  df-lines 39468  df-psubsp 39470  df-pmap 39471  df-padd 39763  df-lhyp 39955  df-laut 39956  df-ldil 40071  df-ltrn 40072  df-trl 40126  df-tendo 40722
This theorem is referenced by:  tendo0pl  40758  tendo0plr  40759  tendoipl  40764  tendoid0  40792  tendo0mul  40793  tendo0mulr  40794  tendoex  40942  cdleml5N  40947  erngdvlem1  40955  erngdvlem4  40958  erng0g  40961  erngdvlem1-rN  40963  erngdvlem4-rN  40966  dvh0g  41078  dvhopN  41083  dib1dim  41132  dib1dim2  41135  dibss  41136  diblss  41137  diblsmopel  41138  dicn0  41159  cdlemn4  41165  cdlemn4a  41166  cdlemn6  41169  dihopelvalcpre  41215  dihmeetlem4preN  41273  dihatlat  41301  dihatexv  41305
  Copyright terms: Public domain W3C validator