| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo0cl | Structured version Visualization version GIF version | ||
| Description: The additive identity is a trace-preserving endormorphism. (Contributed by NM, 12-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0.b | ⊢ 𝐵 = (Base‘𝐾) |
| tendo0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| tendo0.t | ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) |
| tendo0.e | ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) |
| tendo0.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| Ref | Expression |
|---|---|
| tendo0cl | ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . 2 ⊢ (le‘𝐾) = (le‘𝐾) | |
| 2 | tendo0.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 3 | tendo0.t | . 2 ⊢ 𝑇 = ((LTrn‘𝐾)‘𝑊) | |
| 4 | eqid 2729 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 5 | tendo0.e | . 2 ⊢ 𝐸 = ((TEndo‘𝐾)‘𝑊) | |
| 6 | id 22 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 7 | tendo0.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐾) | |
| 8 | 7, 2, 3 | idltrn 40144 | . . . 4 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → ( I ↾ 𝐵) ∈ 𝑇) |
| 9 | 8 | adantr 480 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → ( I ↾ 𝐵) ∈ 𝑇) |
| 10 | tendo0.o | . . . 4 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 11 | 10 | tendo0cbv 40780 | . . 3 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 12 | 9, 11 | fmptd 7086 | . 2 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂:𝑇⟶𝑇) |
| 13 | 7, 2, 3, 5, 10 | tendo0co2 40782 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇 ∧ ℎ ∈ 𝑇) → (𝑂‘(𝑔 ∘ ℎ)) = ((𝑂‘𝑔) ∘ (𝑂‘ℎ))) |
| 14 | 7, 2, 3, 5, 10, 1, 4 | tendo0tp 40783 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑔 ∈ 𝑇) → (((trL‘𝐾)‘𝑊)‘(𝑂‘𝑔))(le‘𝐾)(((trL‘𝐾)‘𝑊)‘𝑔)) |
| 15 | 1, 2, 3, 4, 5, 6, 12, 13, 14 | istendod 40756 | 1 ⊢ ((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) → 𝑂 ∈ 𝐸) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 ‘cfv 6511 Basecbs 17179 lecple 17227 HLchlt 39343 LHypclh 39978 LTrncltrn 40095 trLctrl 40152 TEndoctendo 40746 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1st 7968 df-2nd 7969 df-undef 8252 df-map 8801 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tendo 40749 |
| This theorem is referenced by: tendo0pl 40785 tendo0plr 40786 tendoipl 40791 tendoid0 40819 tendo0mul 40820 tendo0mulr 40821 tendoex 40969 cdleml5N 40974 erngdvlem1 40982 erngdvlem4 40985 erng0g 40988 erngdvlem1-rN 40990 erngdvlem4-rN 40993 dvh0g 41105 dvhopN 41110 dib1dim 41159 dib1dim2 41162 dibss 41163 diblss 41164 diblsmopel 41165 dicn0 41186 cdlemn4 41192 cdlemn4a 41193 cdlemn6 41196 dihopelvalcpre 41242 dihmeetlem4preN 41300 dihatlat 41328 dihatexv 41332 |
| Copyright terms: Public domain | W3C validator |