Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cbvmptv | Structured version Visualization version GIF version |
Description: Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by Mario Carneiro, 19-Feb-2013.) Add disjoint variable condition to avoid ax-13 2380. See cbvmptvg 5134 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 17-Jan-2024.) |
Ref | Expression |
---|---|
cbvmptv.1 | ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
cbvmptv | ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2920 | . 2 ⊢ Ⅎ𝑦𝐵 | |
2 | nfcv 2920 | . 2 ⊢ Ⅎ𝑥𝐶 | |
3 | cbvmptv.1 | . 2 ⊢ (𝑥 = 𝑦 → 𝐵 = 𝐶) | |
4 | 1, 2, 3 | cbvmpt 5131 | 1 ⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑦 ∈ 𝐴 ↦ 𝐶) |
Copyright terms: Public domain | W3C validator |