Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi2 Structured version   Visualization version   GIF version

Theorem tendodi2 40832
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendodi2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendodi2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1196 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
84, 5, 6, 7tendoplcl 40828 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑃𝑈) ∈ 𝐸)
91, 2, 3, 8syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑃𝑈) ∈ 𝐸)
10 simpr3 1197 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
114, 6tendococl 40819 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸) → ((𝑆𝑃𝑈) ∘ 𝑉) ∈ 𝐸)
121, 9, 10, 11syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) ∈ 𝐸)
134, 6tendococl 40819 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑉𝐸) → (𝑆𝑉) ∈ 𝐸)
141, 2, 10, 13syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑉) ∈ 𝐸)
154, 6tendococl 40819 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑉) ∈ 𝐸)
161, 3, 10, 15syl3anc 1373 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑉) ∈ 𝐸)
174, 5, 6, 7tendoplcl 40828 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑉) ∈ 𝐸 ∧ (𝑈𝑉) ∈ 𝐸) → ((𝑆𝑉)𝑃(𝑈𝑉)) ∈ 𝐸)
181, 14, 16, 17syl3anc 1373 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑉)𝑃(𝑈𝑉)) ∈ 𝐸)
19 simpll 766 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simplr1 1216 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
21 simplr2 1217 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
2219, 20, 21, 8syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑃𝑈) ∈ 𝐸)
23 simplr3 1218 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
24 simpr 484 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
254, 5, 6tendocoval 40813 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = ((𝑆𝑃𝑈)‘(𝑉𝑔)))
2619, 22, 23, 24, 25syl121anc 1377 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = ((𝑆𝑃𝑈)‘(𝑉𝑔)))
27 simplll 774 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝐾 ∈ HL)
28 simpllr 775 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑊𝐻)
294, 5, 6tendocoval 40813 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3027, 28, 20, 23, 24, 29syl221anc 1383 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
314, 5, 6tendocoval 40813 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
3227, 28, 21, 23, 24, 31syl221anc 1383 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
3330, 32coeq12d 5803 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑉)‘𝑔) ∘ ((𝑈𝑉)‘𝑔)) = ((𝑆‘(𝑉𝑔)) ∘ (𝑈‘(𝑉𝑔))))
3419, 20, 23, 13syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑉) ∈ 𝐸)
3519, 21, 23, 15syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑉) ∈ 𝐸)
367, 5tendopl2 40824 . . . . . 6 (((𝑆𝑉) ∈ 𝐸 ∧ (𝑈𝑉) ∈ 𝐸𝑔𝑇) → (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔) = (((𝑆𝑉)‘𝑔) ∘ ((𝑈𝑉)‘𝑔)))
3734, 35, 24, 36syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔) = (((𝑆𝑉)‘𝑔) ∘ ((𝑈𝑉)‘𝑔)))
384, 5, 6tendocl 40814 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
3919, 23, 24, 38syl3anc 1373 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
407, 5tendopl2 40824 . . . . . 6 ((𝑆𝐸𝑈𝐸 ∧ (𝑉𝑔) ∈ 𝑇) → ((𝑆𝑃𝑈)‘(𝑉𝑔)) = ((𝑆‘(𝑉𝑔)) ∘ (𝑈‘(𝑉𝑔))))
4120, 21, 39, 40syl3anc 1373 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃𝑈)‘(𝑉𝑔)) = ((𝑆‘(𝑉𝑔)) ∘ (𝑈‘(𝑉𝑔))))
4233, 37, 413eqtr4rd 2777 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃𝑈)‘(𝑉𝑔)) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔))
4326, 42eqtrd 2766 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔))
4443ralrimiva 3124 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔))
454, 5, 6tendoeq1 40811 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑆𝑃𝑈) ∘ 𝑉) ∈ 𝐸 ∧ ((𝑆𝑉)𝑃(𝑈𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
461, 12, 18, 44, 45syl121anc 1377 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cmpt 5170  ccom 5618  cfv 6481  (class class class)co 7346  cmpo 7348  HLchlt 39397  LHypclh 40031  LTrncltrn 40148  TEndoctendo 40799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-riotaBAD 39000
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-iin 4942  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-undef 8203  df-map 8752  df-proset 18200  df-poset 18219  df-plt 18234  df-lub 18250  df-glb 18251  df-join 18252  df-meet 18253  df-p0 18329  df-p1 18330  df-lat 18338  df-clat 18405  df-oposet 39223  df-ol 39225  df-oml 39226  df-covers 39313  df-ats 39314  df-atl 39345  df-cvlat 39369  df-hlat 39398  df-llines 39545  df-lplanes 39546  df-lvols 39547  df-lines 39548  df-psubsp 39550  df-pmap 39551  df-padd 39843  df-lhyp 40035  df-laut 40036  df-ldil 40151  df-ltrn 40152  df-trl 40206  df-tendo 40802
This theorem is referenced by:  erngdvlem3  41037  erngdvlem3-rN  41045
  Copyright terms: Public domain W3C validator