Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendodi2 Structured version   Visualization version   GIF version

Theorem tendodi2 38799
Description: Endomorphism composition distributes over sum. (Contributed by NM, 13-Jun-2013.)
Hypotheses
Ref Expression
tendopl.h 𝐻 = (LHyp‘𝐾)
tendopl.t 𝑇 = ((LTrn‘𝐾)‘𝑊)
tendopl.e 𝐸 = ((TEndo‘𝐾)‘𝑊)
tendopl.p 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
Assertion
Ref Expression
tendodi2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
Distinct variable groups:   𝑡,𝑠,𝐸   𝑓,𝑠,𝑡,𝑇   𝑓,𝑊,𝑠,𝑡
Allowed substitution hints:   𝑃(𝑡,𝑓,𝑠)   𝑆(𝑡,𝑓,𝑠)   𝑈(𝑡,𝑓,𝑠)   𝐸(𝑓)   𝐻(𝑡,𝑓,𝑠)   𝐾(𝑡,𝑓,𝑠)   𝑉(𝑡,𝑓,𝑠)

Proof of Theorem tendodi2
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 simpl 483 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝐾 ∈ HL ∧ 𝑊𝐻))
2 simpr1 1193 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑆𝐸)
3 simpr2 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑈𝐸)
4 tendopl.h . . . . 5 𝐻 = (LHyp‘𝐾)
5 tendopl.t . . . . 5 𝑇 = ((LTrn‘𝐾)‘𝑊)
6 tendopl.e . . . . 5 𝐸 = ((TEndo‘𝐾)‘𝑊)
7 tendopl.p . . . . 5 𝑃 = (𝑠𝐸, 𝑡𝐸 ↦ (𝑓𝑇 ↦ ((𝑠𝑓) ∘ (𝑡𝑓))))
84, 5, 6, 7tendoplcl 38795 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑈𝐸) → (𝑆𝑃𝑈) ∈ 𝐸)
91, 2, 3, 8syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑃𝑈) ∈ 𝐸)
10 simpr3 1195 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → 𝑉𝐸)
114, 6tendococl 38786 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸) → ((𝑆𝑃𝑈) ∘ 𝑉) ∈ 𝐸)
121, 9, 10, 11syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) ∈ 𝐸)
134, 6tendococl 38786 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑆𝐸𝑉𝐸) → (𝑆𝑉) ∈ 𝐸)
141, 2, 10, 13syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑆𝑉) ∈ 𝐸)
154, 6tendococl 38786 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑈𝐸𝑉𝐸) → (𝑈𝑉) ∈ 𝐸)
161, 3, 10, 15syl3anc 1370 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → (𝑈𝑉) ∈ 𝐸)
174, 5, 6, 7tendoplcl 38795 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝑉) ∈ 𝐸 ∧ (𝑈𝑉) ∈ 𝐸) → ((𝑆𝑉)𝑃(𝑈𝑉)) ∈ 𝐸)
181, 14, 16, 17syl3anc 1370 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑉)𝑃(𝑈𝑉)) ∈ 𝐸)
19 simpll 764 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝐾 ∈ HL ∧ 𝑊𝐻))
20 simplr1 1214 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑆𝐸)
21 simplr2 1215 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑈𝐸)
2219, 20, 21, 8syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑃𝑈) ∈ 𝐸)
23 simplr3 1216 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑉𝐸)
24 simpr 485 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑔𝑇)
254, 5, 6tendocoval 38780 . . . . 5 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ ((𝑆𝑃𝑈) ∈ 𝐸𝑉𝐸) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = ((𝑆𝑃𝑈)‘(𝑉𝑔)))
2619, 22, 23, 24, 25syl121anc 1374 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = ((𝑆𝑃𝑈)‘(𝑉𝑔)))
27 simplll 772 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝐾 ∈ HL)
28 simpllr 773 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → 𝑊𝐻)
294, 5, 6tendocoval 38780 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
3027, 28, 20, 23, 24, 29syl221anc 1380 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑉)‘𝑔) = (𝑆‘(𝑉𝑔)))
314, 5, 6tendocoval 38780 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑈𝐸𝑉𝐸) ∧ 𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
3227, 28, 21, 23, 24, 31syl221anc 1380 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑈𝑉)‘𝑔) = (𝑈‘(𝑉𝑔)))
3330, 32coeq12d 5773 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑉)‘𝑔) ∘ ((𝑈𝑉)‘𝑔)) = ((𝑆‘(𝑉𝑔)) ∘ (𝑈‘(𝑉𝑔))))
3419, 20, 23, 13syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑆𝑉) ∈ 𝐸)
3519, 21, 23, 15syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑈𝑉) ∈ 𝐸)
367, 5tendopl2 38791 . . . . . 6 (((𝑆𝑉) ∈ 𝐸 ∧ (𝑈𝑉) ∈ 𝐸𝑔𝑇) → (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔) = (((𝑆𝑉)‘𝑔) ∘ ((𝑈𝑉)‘𝑔)))
3734, 35, 24, 36syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔) = (((𝑆𝑉)‘𝑔) ∘ ((𝑈𝑉)‘𝑔)))
384, 5, 6tendocl 38781 . . . . . . 7 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑉𝐸𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
3919, 23, 24, 38syl3anc 1370 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (𝑉𝑔) ∈ 𝑇)
407, 5tendopl2 38791 . . . . . 6 ((𝑆𝐸𝑈𝐸 ∧ (𝑉𝑔) ∈ 𝑇) → ((𝑆𝑃𝑈)‘(𝑉𝑔)) = ((𝑆‘(𝑉𝑔)) ∘ (𝑈‘(𝑉𝑔))))
4120, 21, 39, 40syl3anc 1370 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃𝑈)‘(𝑉𝑔)) = ((𝑆‘(𝑉𝑔)) ∘ (𝑈‘(𝑉𝑔))))
4233, 37, 413eqtr4rd 2789 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → ((𝑆𝑃𝑈)‘(𝑉𝑔)) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔))
4326, 42eqtrd 2778 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) ∧ 𝑔𝑇) → (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔))
4443ralrimiva 3103 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ∀𝑔𝑇 (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔))
454, 5, 6tendoeq1 38778 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (((𝑆𝑃𝑈) ∘ 𝑉) ∈ 𝐸 ∧ ((𝑆𝑉)𝑃(𝑈𝑉)) ∈ 𝐸) ∧ ∀𝑔𝑇 (((𝑆𝑃𝑈) ∘ 𝑉)‘𝑔) = (((𝑆𝑉)𝑃(𝑈𝑉))‘𝑔)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
461, 12, 18, 44, 45syl121anc 1374 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑆𝐸𝑈𝐸𝑉𝐸)) → ((𝑆𝑃𝑈) ∘ 𝑉) = ((𝑆𝑉)𝑃(𝑈𝑉)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  cmpt 5157  ccom 5593  cfv 6433  (class class class)co 7275  cmpo 7277  HLchlt 37364  LHypclh 37998  LTrncltrn 38115  TEndoctendo 38766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-riotaBAD 36967
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-undef 8089  df-map 8617  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-p1 18144  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-llines 37512  df-lplanes 37513  df-lvols 37514  df-lines 37515  df-psubsp 37517  df-pmap 37518  df-padd 37810  df-lhyp 38002  df-laut 38003  df-ldil 38118  df-ltrn 38119  df-trl 38173  df-tendo 38769
This theorem is referenced by:  erngdvlem3  39004  erngdvlem3-rN  39012
  Copyright terms: Public domain W3C validator