Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo02 | Structured version Visualization version GIF version |
Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendo02.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
tendo02 | ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2734 | . 2 ⊢ (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
2 | tendo0cbv.o | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | 2 | tendo0cbv 38826 | . 2 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
4 | funi 6483 | . . 3 ⊢ Fun I | |
5 | tendo02.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | 5 | fvexi 6806 | . . 3 ⊢ 𝐵 ∈ V |
7 | resfunexg 7111 | . . 3 ⊢ ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V) | |
8 | 4, 6, 7 | mp2an 688 | . 2 ⊢ ( I ↾ 𝐵) ∈ V |
9 | 1, 3, 8 | fvmpt 6895 | 1 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2101 Vcvv 3434 ↦ cmpt 5160 I cid 5490 ↾ cres 5593 Fun wfun 6441 ‘cfv 6447 Basecbs 16940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-rep 5212 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3223 df-rab 3224 df-v 3436 df-sbc 3719 df-csb 3835 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-iun 4929 df-br 5078 df-opab 5140 df-mpt 5161 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-iota 6399 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-fv 6455 |
This theorem is referenced by: tendo0co2 38828 tendo0tp 38829 tendo0pl 38831 tendoipl 38837 tendoid0 38865 tendo0mul 38866 tendo0mulr 38867 tendo1ne0 38868 tendoex 39015 dicn0 39232 dihordlem7b 39255 dihmeetlem1N 39330 dihglblem5apreN 39331 dihmeetlem4preN 39346 dihmeetlem13N 39359 |
Copyright terms: Public domain | W3C validator |