Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo02 Structured version   Visualization version   GIF version

Theorem tendo02 40806
Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0cbv.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo02.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tendo02 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐹(𝑓)   𝐾(𝑓)   𝑂(𝑓)

Proof of Theorem tendo02
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2736 . 2 (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
2 tendo0cbv.o . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
32tendo0cbv 40805 . 2 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
4 funi 6568 . . 3 Fun I
5 tendo02.b . . . 4 𝐵 = (Base‘𝐾)
65fvexi 6890 . . 3 𝐵 ∈ V
7 resfunexg 7207 . . 3 ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V)
84, 6, 7mp2an 692 . 2 ( I ↾ 𝐵) ∈ V
91, 3, 8fvmpt 6986 1 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201   I cid 5547  cres 5656  Fun wfun 6525  cfv 6531  Basecbs 17228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539
This theorem is referenced by:  tendo0co2  40807  tendo0tp  40808  tendo0pl  40810  tendoipl  40816  tendoid0  40844  tendo0mul  40845  tendo0mulr  40846  tendo1ne0  40847  tendoex  40994  dicn0  41211  dihordlem7b  41234  dihmeetlem1N  41309  dihglblem5apreN  41310  dihmeetlem4preN  41325  dihmeetlem13N  41338
  Copyright terms: Public domain W3C validator