Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo02 | Structured version Visualization version GIF version |
Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendo02.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
tendo02 | ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2738 | . 2 ⊢ (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
2 | tendo0cbv.o | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | 2 | tendo0cbv 39012 | . 2 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
4 | funi 6500 | . . 3 ⊢ Fun I | |
5 | tendo02.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | 5 | fvexi 6823 | . . 3 ⊢ 𝐵 ∈ V |
7 | resfunexg 7128 | . . 3 ⊢ ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V) | |
8 | 4, 6, 7 | mp2an 689 | . 2 ⊢ ( I ↾ 𝐵) ∈ V |
9 | 1, 3, 8 | fvmpt 6912 | 1 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5168 I cid 5504 ↾ cres 5607 Fun wfun 6457 ‘cfv 6463 Basecbs 16979 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 |
This theorem is referenced by: tendo0co2 39014 tendo0tp 39015 tendo0pl 39017 tendoipl 39023 tendoid0 39051 tendo0mul 39052 tendo0mulr 39053 tendo1ne0 39054 tendoex 39201 dicn0 39418 dihordlem7b 39441 dihmeetlem1N 39516 dihglblem5apreN 39517 dihmeetlem4preN 39532 dihmeetlem13N 39545 |
Copyright terms: Public domain | W3C validator |