Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo02 Structured version   Visualization version   GIF version

Theorem tendo02 40754
Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0cbv.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo02.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tendo02 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐹(𝑓)   𝐾(𝑓)   𝑂(𝑓)

Proof of Theorem tendo02
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
2 tendo0cbv.o . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
32tendo0cbv 40753 . 2 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
4 funi 6532 . . 3 Fun I
5 tendo02.b . . . 4 𝐵 = (Base‘𝐾)
65fvexi 6854 . . 3 𝐵 ∈ V
7 resfunexg 7171 . . 3 ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V)
84, 6, 7mp2an 692 . 2 ( I ↾ 𝐵) ∈ V
91, 3, 8fvmpt 6950 1 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3444  cmpt 5183   I cid 5525  cres 5633  Fun wfun 6493  cfv 6499  Basecbs 17155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507
This theorem is referenced by:  tendo0co2  40755  tendo0tp  40756  tendo0pl  40758  tendoipl  40764  tendoid0  40792  tendo0mul  40793  tendo0mulr  40794  tendo1ne0  40795  tendoex  40942  dicn0  41159  dihordlem7b  41182  dihmeetlem1N  41257  dihglblem5apreN  41258  dihmeetlem4preN  41273  dihmeetlem13N  41286
  Copyright terms: Public domain W3C validator