Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tendo02 Structured version   Visualization version   GIF version

Theorem tendo02 40781
Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.)
Hypotheses
Ref Expression
tendo0cbv.o 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
tendo02.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
tendo02 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
Distinct variable groups:   𝐵,𝑓   𝑇,𝑓
Allowed substitution hints:   𝐹(𝑓)   𝐾(𝑓)   𝑂(𝑓)

Proof of Theorem tendo02
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqidd 2730 . 2 (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵))
2 tendo0cbv.o . . 3 𝑂 = (𝑓𝑇 ↦ ( I ↾ 𝐵))
32tendo0cbv 40780 . 2 𝑂 = (𝑔𝑇 ↦ ( I ↾ 𝐵))
4 funi 6548 . . 3 Fun I
5 tendo02.b . . . 4 𝐵 = (Base‘𝐾)
65fvexi 6872 . . 3 𝐵 ∈ V
7 resfunexg 7189 . . 3 ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V)
84, 6, 7mp2an 692 . 2 ( I ↾ 𝐵) ∈ V
91, 3, 8fvmpt 6968 1 (𝐹𝑇 → (𝑂𝐹) = ( I ↾ 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3447  cmpt 5188   I cid 5532  cres 5640  Fun wfun 6505  cfv 6511  Basecbs 17179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519
This theorem is referenced by:  tendo0co2  40782  tendo0tp  40783  tendo0pl  40785  tendoipl  40791  tendoid0  40819  tendo0mul  40820  tendo0mulr  40821  tendo1ne0  40822  tendoex  40969  dicn0  41186  dihordlem7b  41209  dihmeetlem1N  41284  dihglblem5apreN  41285  dihmeetlem4preN  41300  dihmeetlem13N  41313
  Copyright terms: Public domain W3C validator