Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo02 | Structured version Visualization version GIF version |
Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.) |
Ref | Expression |
---|---|
tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
tendo02.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
tendo02 | ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqidd 2739 | . 2 ⊢ (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
2 | tendo0cbv.o | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
3 | 2 | tendo0cbv 38727 | . 2 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
4 | funi 6450 | . . 3 ⊢ Fun I | |
5 | tendo02.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
6 | 5 | fvexi 6770 | . . 3 ⊢ 𝐵 ∈ V |
7 | resfunexg 7073 | . . 3 ⊢ ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V) | |
8 | 4, 6, 7 | mp2an 688 | . 2 ⊢ ( I ↾ 𝐵) ∈ V |
9 | 1, 3, 8 | fvmpt 6857 | 1 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 I cid 5479 ↾ cres 5582 Fun wfun 6412 ‘cfv 6418 Basecbs 16840 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 |
This theorem is referenced by: tendo0co2 38729 tendo0tp 38730 tendo0pl 38732 tendoipl 38738 tendoid0 38766 tendo0mul 38767 tendo0mulr 38768 tendo1ne0 38769 tendoex 38916 dicn0 39133 dihordlem7b 39156 dihmeetlem1N 39231 dihglblem5apreN 39232 dihmeetlem4preN 39247 dihmeetlem13N 39260 |
Copyright terms: Public domain | W3C validator |