| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo02 | Structured version Visualization version GIF version | ||
| Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| tendo02.b | ⊢ 𝐵 = (Base‘𝐾) |
| Ref | Expression |
|---|---|
| tendo02 | ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2732 | . 2 ⊢ (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
| 2 | tendo0cbv.o | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 3 | 2 | tendo0cbv 40833 | . 2 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 4 | funi 6513 | . . 3 ⊢ Fun I | |
| 5 | tendo02.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | 5 | fvexi 6836 | . . 3 ⊢ 𝐵 ∈ V |
| 7 | resfunexg 7149 | . . 3 ⊢ ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V) | |
| 8 | 4, 6, 7 | mp2an 692 | . 2 ⊢ ( I ↾ 𝐵) ∈ V |
| 9 | 1, 3, 8 | fvmpt 6929 | 1 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5170 I cid 5508 ↾ cres 5616 Fun wfun 6475 ‘cfv 6481 Basecbs 17120 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 |
| This theorem is referenced by: tendo0co2 40835 tendo0tp 40836 tendo0pl 40838 tendoipl 40844 tendoid0 40872 tendo0mul 40873 tendo0mulr 40874 tendo1ne0 40875 tendoex 41022 dicn0 41239 dihordlem7b 41262 dihmeetlem1N 41337 dihglblem5apreN 41338 dihmeetlem4preN 41353 dihmeetlem13N 41366 |
| Copyright terms: Public domain | W3C validator |