| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > tendo02 | Structured version Visualization version GIF version | ||
| Description: Value of additive identity endomorphism. (Contributed by NM, 11-Jun-2013.) |
| Ref | Expression |
|---|---|
| tendo0cbv.o | ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| tendo02.b | ⊢ 𝐵 = (Base‘𝐾) |
| Ref | Expression |
|---|---|
| tendo02 | ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqidd 2730 | . 2 ⊢ (𝑔 = 𝐹 → ( I ↾ 𝐵) = ( I ↾ 𝐵)) | |
| 2 | tendo0cbv.o | . . 3 ⊢ 𝑂 = (𝑓 ∈ 𝑇 ↦ ( I ↾ 𝐵)) | |
| 3 | 2 | tendo0cbv 40780 | . 2 ⊢ 𝑂 = (𝑔 ∈ 𝑇 ↦ ( I ↾ 𝐵)) |
| 4 | funi 6548 | . . 3 ⊢ Fun I | |
| 5 | tendo02.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
| 6 | 5 | fvexi 6872 | . . 3 ⊢ 𝐵 ∈ V |
| 7 | resfunexg 7189 | . . 3 ⊢ ((Fun I ∧ 𝐵 ∈ V) → ( I ↾ 𝐵) ∈ V) | |
| 8 | 4, 6, 7 | mp2an 692 | . 2 ⊢ ( I ↾ 𝐵) ∈ V |
| 9 | 1, 3, 8 | fvmpt 6968 | 1 ⊢ (𝐹 ∈ 𝑇 → (𝑂‘𝐹) = ( I ↾ 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ↦ cmpt 5188 I cid 5532 ↾ cres 5640 Fun wfun 6505 ‘cfv 6511 Basecbs 17179 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 |
| This theorem is referenced by: tendo0co2 40782 tendo0tp 40783 tendo0pl 40785 tendoipl 40791 tendoid0 40819 tendo0mul 40820 tendo0mulr 40821 tendo1ne0 40822 tendoex 40969 dicn0 41186 dihordlem7b 41209 dihmeetlem1N 41284 dihglblem5apreN 41285 dihmeetlem4preN 41300 dihmeetlem13N 41313 |
| Copyright terms: Public domain | W3C validator |