| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istermc3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 9033, map1 9048, and euen1b 9036. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| istermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| istermc3 | ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | 1 | istermc 49145 | . 2 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 3 | en1 9032 | . . 3 ⊢ (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥}) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o) ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 5 | 2, 4 | bitr4i 278 | 1 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1539 ∃wex 1778 ∈ wcel 2107 {csn 4599 class class class wbr 5116 ‘cfv 6527 1oc1o 8467 ≈ cen 8950 Basecbs 17213 ThinCatcthinc 49090 TermCatctermc 49143 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-suc 6355 df-iota 6480 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-fv 6535 df-1o 8474 df-en 8954 df-termc 49144 |
| This theorem is referenced by: setcsnterm 49160 termcterm2 49184 |
| Copyright terms: Public domain | W3C validator |