Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc3 Structured version   Visualization version   GIF version

Theorem istermc3 49096
Description: The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 9061, map1 9076, and euen1b 9064. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc3 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o))

Proof of Theorem istermc3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 istermc.b . . 3 𝐵 = (Base‘𝐶)
21istermc 49094 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
3 en1 9060 . . 3 (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥})
43anbi2i 623 . 2 ((𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o) ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
52, 4bitr4i 278 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {csn 4624   class class class wbr 5141  cfv 6559  1oc1o 8495  cen 8978  Basecbs 17243  ThinCatcthinc 49040  TermCatctermc 49092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-suc 6388  df-iota 6512  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-fv 6567  df-1o 8502  df-en 8982  df-termc 49093
This theorem is referenced by:  setcsnterm  49106  termcterm2  49119
  Copyright terms: Public domain W3C validator