Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  istermc3 Structured version   Visualization version   GIF version

Theorem istermc3 49637
Description: The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 8958, map1 8973, and euen1b 8961. (Contributed by Zhi Wang, 16-Oct-2025.)
Hypothesis
Ref Expression
istermc.b 𝐵 = (Base‘𝐶)
Assertion
Ref Expression
istermc3 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o))

Proof of Theorem istermc3
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 istermc.b . . 3 𝐵 = (Base‘𝐶)
21istermc 49635 . 2 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
3 en1 8957 . . 3 (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥})
43anbi2i 623 . 2 ((𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o) ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥}))
52, 4bitr4i 278 1 (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2113  {csn 4577   class class class wbr 5095  cfv 6489  1oc1o 8387  cen 8876  Basecbs 17127  ThinCatcthinc 49578  TermCatctermc 49633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-1o 8394  df-en 8880  df-termc 49634
This theorem is referenced by:  setcsnterm  49651  termcterm2  49675
  Copyright terms: Public domain W3C validator