| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > istermc3 | Structured version Visualization version GIF version | ||
| Description: The predicate "is a terminal category". A terminal category is a thin category whose base set is equinumerous to 1o. Consider en1b 8998, map1 9013, and euen1b 9001. (Contributed by Zhi Wang, 16-Oct-2025.) |
| Ref | Expression |
|---|---|
| istermc.b | ⊢ 𝐵 = (Base‘𝐶) |
| Ref | Expression |
|---|---|
| istermc3 | ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istermc.b | . . 3 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | 1 | istermc 49443 | . 2 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 3 | en1 8997 | . . 3 ⊢ (𝐵 ≈ 1o ↔ ∃𝑥 𝐵 = {𝑥}) | |
| 4 | 3 | anbi2i 623 | . 2 ⊢ ((𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o) ↔ (𝐶 ∈ ThinCat ∧ ∃𝑥 𝐵 = {𝑥})) |
| 5 | 2, 4 | bitr4i 278 | 1 ⊢ (𝐶 ∈ TermCat ↔ (𝐶 ∈ ThinCat ∧ 𝐵 ≈ 1o)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {csn 4591 class class class wbr 5109 ‘cfv 6513 1oc1o 8429 ≈ cen 8917 Basecbs 17185 ThinCatcthinc 49386 TermCatctermc 49441 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-1o 8436 df-en 8921 df-termc 49442 |
| This theorem is referenced by: setcsnterm 49459 termcterm2 49483 |
| Copyright terms: Public domain | W3C validator |