MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3gr2nb Structured version   Visualization version   GIF version

Theorem nb3gr2nb 29311
Description: If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Assertion
Ref Expression
nb3gr2nb (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))

Proof of Theorem nb3gr2nb
StepHypRef Expression
1 prcom 4696 . . . . . . . . 9 {𝐴, 𝐶} = {𝐶, 𝐴}
21eleq1i 2819 . . . . . . . 8 ({𝐴, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
32biimpi 216 . . . . . . 7 ({𝐴, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐴} ∈ (Edg‘𝐺))
43adantl 481 . . . . . 6 (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐴} ∈ (Edg‘𝐺))
5 prcom 4696 . . . . . . . . 9 {𝐵, 𝐶} = {𝐶, 𝐵}
65eleq1i 2819 . . . . . . . 8 ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐵} ∈ (Edg‘𝐺))
76biimpi 216 . . . . . . 7 ({𝐵, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐵} ∈ (Edg‘𝐺))
87adantl 481 . . . . . 6 (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐵} ∈ (Edg‘𝐺))
94, 8anim12i 613 . . . . 5 ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺)))
109a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
11 eqid 2729 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
12 eqid 2729 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
13 simprr 772 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph)
14 simprl 770 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶})
15 simpl 482 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐴𝑋𝐵𝑌𝐶𝑍))
1611, 12, 13, 14, 15nb3grprlem1 29307 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺))))
17 3ancoma 1097 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐴𝑋𝐶𝑍))
1817biimpi 216 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐵𝑌𝐴𝑋𝐶𝑍))
19 tpcoma 4714 . . . . . . . . 9 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
2019eqeq2i 2742 . . . . . . . 8 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
2120biimpi 216 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
2221anim1i 615 . . . . . 6 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph))
23 simprr 772 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph)
24 simprl 770 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
25 simpl 482 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵𝑌𝐴𝑋𝐶𝑍))
2611, 12, 23, 24, 25nb3grprlem1 29307 . . . . . 6 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
2718, 22, 26syl2an 596 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
2816, 27anbi12d 632 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))))
29 3anrot 1099 . . . . . 6 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
3029biimpri 228 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐶𝑍𝐴𝑋𝐵𝑌))
31 tprot 4713 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
3231eqcomi 2738 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
3332eqeq2i 2742 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵})
3433anbi1i 624 . . . . . 6 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ↔ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph))
3534biimpi 216 . . . . 5 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph))
36 simprr 772 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph)
37 simprl 770 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵})
38 simpl 482 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (𝐶𝑍𝐴𝑋𝐵𝑌))
3911, 12, 36, 37, 38nb3grprlem1 29307 . . . . 5 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
4030, 35, 39syl2an 596 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
4110, 28, 403imtr4d 294 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) → (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))
4241pm4.71d 561 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
43 df-3an 1088 . 2 (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))
4442, 43bitr4di 289 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cpr 4591  {ctp 4593  cfv 6511  (class class class)co 7387  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   NeighbVtx cnbgr 29259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-edg 28975  df-upgr 29009  df-umgr 29010  df-usgr 29078  df-nbgr 29260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator