Proof of Theorem nb3gr2nb
| Step | Hyp | Ref
| Expression |
| 1 | | prcom 4714 |
. . . . . . . . 9
⊢ {𝐴, 𝐶} = {𝐶, 𝐴} |
| 2 | 1 | eleq1i 2824 |
. . . . . . . 8
⊢ ({𝐴, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺)) |
| 3 | 2 | biimpi 216 |
. . . . . . 7
⊢ ({𝐴, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐴} ∈ (Edg‘𝐺)) |
| 4 | 3 | adantl 481 |
. . . . . 6
⊢ (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐴} ∈ (Edg‘𝐺)) |
| 5 | | prcom 4714 |
. . . . . . . . 9
⊢ {𝐵, 𝐶} = {𝐶, 𝐵} |
| 6 | 5 | eleq1i 2824 |
. . . . . . . 8
⊢ ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐵} ∈ (Edg‘𝐺)) |
| 7 | 6 | biimpi 216 |
. . . . . . 7
⊢ ({𝐵, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐵} ∈ (Edg‘𝐺)) |
| 8 | 7 | adantl 481 |
. . . . . 6
⊢ (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐵} ∈ (Edg‘𝐺)) |
| 9 | 4, 8 | anim12i 613 |
. . . . 5
⊢ ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))) |
| 10 | 9 | a1i 11 |
. . . 4
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺)))) |
| 11 | | eqid 2734 |
. . . . . 6
⊢
(Vtx‘𝐺) =
(Vtx‘𝐺) |
| 12 | | eqid 2734 |
. . . . . 6
⊢
(Edg‘𝐺) =
(Edg‘𝐺) |
| 13 | | simprr 772 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph) |
| 14 | | simprl 770 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶}) |
| 15 | | simpl 482 |
. . . . . 6
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 16 | 11, 12, 13, 14, 15 | nb3grprlem1 29344 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)))) |
| 17 | | 3ancoma 1097 |
. . . . . . 7
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ↔ (𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍)) |
| 18 | 17 | biimpi 216 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍)) |
| 19 | | tpcoma 4732 |
. . . . . . . . 9
⊢ {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶} |
| 20 | 19 | eqeq2i 2747 |
. . . . . . . 8
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶}) |
| 21 | 20 | biimpi 216 |
. . . . . . 7
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵, 𝐶} → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶}) |
| 22 | 21 | anim1i 615 |
. . . . . 6
⊢
(((Vtx‘𝐺) =
{𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) |
| 23 | | simprr 772 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph) |
| 24 | | simprl 770 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶}) |
| 25 | | simpl 482 |
. . . . . . 7
⊢ (((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍)) |
| 26 | 11, 12, 23, 24, 25 | nb3grprlem1 29344 |
. . . . . 6
⊢ (((𝐵 ∈ 𝑌 ∧ 𝐴 ∈ 𝑋 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))) |
| 27 | 18, 22, 26 | syl2an 596 |
. . . . 5
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))) |
| 28 | 16, 27 | anbi12d 632 |
. . . 4
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))) |
| 29 | | 3anrot 1099 |
. . . . . 6
⊢ ((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ↔ (𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍)) |
| 30 | 29 | biimpri 228 |
. . . . 5
⊢ ((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) → (𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
| 31 | | tprot 4731 |
. . . . . . . . 9
⊢ {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶} |
| 32 | 31 | eqcomi 2743 |
. . . . . . . 8
⊢ {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵} |
| 33 | 32 | eqeq2i 2747 |
. . . . . . 7
⊢
((Vtx‘𝐺) =
{𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵}) |
| 34 | 33 | anbi1i 624 |
. . . . . 6
⊢
(((Vtx‘𝐺) =
{𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ↔ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) |
| 35 | 34 | biimpi 216 |
. . . . 5
⊢
(((Vtx‘𝐺) =
{𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) |
| 36 | | simprr 772 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph) |
| 37 | | simprl 770 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵}) |
| 38 | | simpl 482 |
. . . . . 6
⊢ (((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌)) |
| 39 | 11, 12, 36, 37, 38 | nb3grprlem1 29344 |
. . . . 5
⊢ (((𝐶 ∈ 𝑍 ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺)))) |
| 40 | 30, 35, 39 | syl2an 596 |
. . . 4
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺)))) |
| 41 | 10, 28, 40 | 3imtr4d 294 |
. . 3
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) → (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})) |
| 42 | 41 | pm4.71d 561 |
. 2
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) |
| 43 | | df-3an 1088 |
. 2
⊢ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})) |
| 44 | 42, 43 | bitr4di 289 |
1
⊢ (((𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑌 ∧ 𝐶 ∈ 𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))) |