MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nb3gr2nb Structured version   Visualization version   GIF version

Theorem nb3gr2nb 28506
Description: If the neighbors of two vertices in a graph with three elements are an unordered pair of the other vertices, the neighbors of all three vertices are an unordered pair of the other vertices. (Contributed by Alexander van der Vekens, 18-Oct-2017.) (Revised by AV, 28-Oct-2020.)
Assertion
Ref Expression
nb3gr2nb (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))

Proof of Theorem nb3gr2nb
StepHypRef Expression
1 prcom 4729 . . . . . . . . 9 {𝐴, 𝐶} = {𝐶, 𝐴}
21eleq1i 2823 . . . . . . . 8 ({𝐴, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐴} ∈ (Edg‘𝐺))
32biimpi 215 . . . . . . 7 ({𝐴, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐴} ∈ (Edg‘𝐺))
43adantl 482 . . . . . 6 (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐴} ∈ (Edg‘𝐺))
5 prcom 4729 . . . . . . . . 9 {𝐵, 𝐶} = {𝐶, 𝐵}
65eleq1i 2823 . . . . . . . 8 ({𝐵, 𝐶} ∈ (Edg‘𝐺) ↔ {𝐶, 𝐵} ∈ (Edg‘𝐺))
76biimpi 215 . . . . . . 7 ({𝐵, 𝐶} ∈ (Edg‘𝐺) → {𝐶, 𝐵} ∈ (Edg‘𝐺))
87adantl 482 . . . . . 6 (({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)) → {𝐶, 𝐵} ∈ (Edg‘𝐺))
94, 8anim12i 613 . . . . 5 ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺)))
109a1i 11 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))) → ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
11 eqid 2731 . . . . . 6 (Vtx‘𝐺) = (Vtx‘𝐺)
12 eqid 2731 . . . . . 6 (Edg‘𝐺) = (Edg‘𝐺)
13 simprr 771 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph)
14 simprl 769 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐴, 𝐵, 𝐶})
15 simpl 483 . . . . . 6 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐴𝑋𝐵𝑌𝐶𝑍))
1611, 12, 13, 14, 15nb3grprlem1 28502 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ↔ ({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺))))
17 3ancoma 1098 . . . . . . 7 ((𝐴𝑋𝐵𝑌𝐶𝑍) ↔ (𝐵𝑌𝐴𝑋𝐶𝑍))
1817biimpi 215 . . . . . 6 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐵𝑌𝐴𝑋𝐶𝑍))
19 tpcoma 4747 . . . . . . . . 9 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
2019eqeq2i 2744 . . . . . . . 8 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
2120biimpi 215 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
2221anim1i 615 . . . . . 6 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph))
23 simprr 771 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph)
24 simprl 769 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐵, 𝐴, 𝐶})
25 simpl 483 . . . . . . 7 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → (𝐵𝑌𝐴𝑋𝐶𝑍))
2611, 12, 23, 24, 25nb3grprlem1 28502 . . . . . 6 (((𝐵𝑌𝐴𝑋𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
2718, 22, 26syl2an 596 . . . . 5 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ↔ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺))))
2816, 27anbi12d 631 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (({𝐴, 𝐵} ∈ (Edg‘𝐺) ∧ {𝐴, 𝐶} ∈ (Edg‘𝐺)) ∧ ({𝐵, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐵, 𝐶} ∈ (Edg‘𝐺)))))
29 3anrot 1100 . . . . . 6 ((𝐶𝑍𝐴𝑋𝐵𝑌) ↔ (𝐴𝑋𝐵𝑌𝐶𝑍))
3029biimpri 227 . . . . 5 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (𝐶𝑍𝐴𝑋𝐵𝑌))
31 tprot 4746 . . . . . . . . 9 {𝐶, 𝐴, 𝐵} = {𝐴, 𝐵, 𝐶}
3231eqcomi 2740 . . . . . . . 8 {𝐴, 𝐵, 𝐶} = {𝐶, 𝐴, 𝐵}
3332eqeq2i 2744 . . . . . . 7 ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ↔ (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵})
3433anbi1i 624 . . . . . 6 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) ↔ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph))
3534biimpi 215 . . . . 5 (((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph))
36 simprr 771 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → 𝐺 ∈ USGraph)
37 simprl 769 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (Vtx‘𝐺) = {𝐶, 𝐴, 𝐵})
38 simpl 483 . . . . . 6 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → (𝐶𝑍𝐴𝑋𝐵𝑌))
3911, 12, 36, 37, 38nb3grprlem1 28502 . . . . 5 (((𝐶𝑍𝐴𝑋𝐵𝑌) ∧ ((Vtx‘𝐺) = {𝐶, 𝐴, 𝐵} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
4030, 35, 39syl2an 596 . . . 4 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ((𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵} ↔ ({𝐶, 𝐴} ∈ (Edg‘𝐺) ∧ {𝐶, 𝐵} ∈ (Edg‘𝐺))))
4110, 28, 403imtr4d 293 . . 3 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) → (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))
4241pm4.71d 562 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
43 df-3an 1089 . 2 (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}) ↔ (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵}))
4442, 43bitr4di 288 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ ((Vtx‘𝐺) = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → (((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶}) ↔ ((𝐺 NeighbVtx 𝐴) = {𝐵, 𝐶} ∧ (𝐺 NeighbVtx 𝐵) = {𝐴, 𝐶} ∧ (𝐺 NeighbVtx 𝐶) = {𝐴, 𝐵})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  {cpr 4624  {ctp 4626  cfv 6532  (class class class)co 7393  Vtxcvtx 28121  Edgcedg 28172  USGraphcusgr 28274   NeighbVtx cnbgr 28454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-tp 4627  df-op 4629  df-uni 4902  df-int 4944  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-1st 7957  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-1o 8448  df-2o 8449  df-oadd 8452  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-dju 9878  df-card 9916  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-2 12257  df-n0 12455  df-xnn0 12527  df-z 12541  df-uz 12805  df-fz 13467  df-hash 14273  df-edg 28173  df-upgr 28207  df-umgr 28208  df-usgr 28276  df-nbgr 28455
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator