MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3vfriswmgr Structured version   Visualization version   GIF version

Theorem 3vfriswmgr 28059
Description: Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3vfriswmgr (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝑌   𝐴,,𝑣,𝑤   𝐵,,𝑣   𝐶,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)   𝑌(𝑣,)   𝑍(𝑤,𝑣,)

Proof of Theorem 3vfriswmgr
StepHypRef Expression
1 frgrusgr 28042 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 3vfriswmgr.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
3 3vfriswmgr.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
42, 3frgr3v 28056 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))))
54exp4b 433 . . . . . . . 8 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))))))
653imp1 1343 . . . . . . 7 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
7 prcom 4670 . . . . . . . . . . . . . . . . . 18 {𝐶, 𝐴} = {𝐴, 𝐶}
87eleq1i 2905 . . . . . . . . . . . . . . . . 17 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
98biimpi 218 . . . . . . . . . . . . . . . 16 ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸)
1093ad2ant3 1131 . . . . . . . . . . . . . . 15 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐴, 𝐶} ∈ 𝐸)
1110adantl 484 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → {𝐴, 𝐶} ∈ 𝐸)
12 simpl11 1244 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐴𝑋)
13 simpl12 1245 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐵𝑌)
14 simp1 1132 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐵)
15143ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝐴𝐵)
1615adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐴𝐵)
1712, 13, 163jca 1124 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐴𝑋𝐵𝑌𝐴𝐵))
18 simp3 1134 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝑉 = {𝐴, 𝐵, 𝐶})
1918anim1i 616 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph))
2017, 19jca 514 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)))
21 simp1 1132 . . . . . . . . . . . . . . 15 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐴, 𝐵} ∈ 𝐸)
222, 33vfriswmgrlem 28058 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
2322imp 409 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
2420, 21, 23syl2an 597 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
2511, 24jca 514 . . . . . . . . . . . . 13 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
26 simpr2 1191 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → {𝐵, 𝐶} ∈ 𝐸)
27 necom 3071 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵𝐵𝐴)
2827biimpi 218 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
29283ad2ant1 1129 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐴)
30293ad2ant2 1130 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝐵𝐴)
3130adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐵𝐴)
3213, 12, 313jca 1124 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐵𝑌𝐴𝑋𝐵𝐴))
33 tpcoma 4688 . . . . . . . . . . . . . . . . . 18 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
3418, 33syl6eq 2874 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝑉 = {𝐵, 𝐴, 𝐶})
3534anim1i 616 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph))
3632, 35jca 514 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → ((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)))
37 prcom 4670 . . . . . . . . . . . . . . . . . 18 {𝐴, 𝐵} = {𝐵, 𝐴}
3837eleq1i 2905 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
3938biimpi 218 . . . . . . . . . . . . . . . 16 ({𝐴, 𝐵} ∈ 𝐸 → {𝐵, 𝐴} ∈ 𝐸)
40393ad2ant1 1129 . . . . . . . . . . . . . . 15 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐵, 𝐴} ∈ 𝐸)
412, 33vfriswmgrlem 28058 . . . . . . . . . . . . . . . . 17 (((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐵, 𝐴} ∈ 𝐸 → ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸))
4241imp 409 . . . . . . . . . . . . . . . 16 ((((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐵, 𝐴} ∈ 𝐸) → ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸)
43 reueq1 3409 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} = {𝐵, 𝐴} → (∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸))
4437, 43ax-mp 5 . . . . . . . . . . . . . . . 16 (∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸)
4542, 44sylibr 236 . . . . . . . . . . . . . . 15 ((((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐵, 𝐴} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)
4636, 40, 45syl2an 597 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)
4726, 46jca 514 . . . . . . . . . . . . 13 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))
4825, 47jca 514 . . . . . . . . . . . 12 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)))
49 preq1 4671 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → {𝑣, 𝐶} = {𝐴, 𝐶})
5049eleq1d 2899 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → ({𝑣, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸))
51 preq1 4671 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐴 → {𝑣, 𝑤} = {𝐴, 𝑤})
5251eleq1d 2899 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝑤} ∈ 𝐸))
5352reubidv 3391 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
5450, 53anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐴 → (({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)))
55 preq1 4671 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → {𝑣, 𝐶} = {𝐵, 𝐶})
5655eleq1d 2899 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → ({𝑣, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ 𝐸))
57 preq1 4671 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐵 → {𝑣, 𝑤} = {𝐵, 𝑤})
5857eleq1d 2899 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝐵, 𝑤} ∈ 𝐸))
5958reubidv 3391 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → (∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))
6056, 59anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → (({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)))
6154, 60ralprg 4634 . . . . . . . . . . . . . . . 16 ((𝐴𝑋𝐵𝑌) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
62613adant3 1128 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
63623ad2ant1 1129 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
6463adantr 483 . . . . . . . . . . . . 13 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
6564adantr 483 . . . . . . . . . . . 12 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
6648, 65mpbird 259 . . . . . . . . . . 11 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸))
67 diftpsn3 4737 . . . . . . . . . . . . . . . 16 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
68673adant1 1126 . . . . . . . . . . . . . . 15 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
69 reueq1 3409 . . . . . . . . . . . . . . . . 17 (({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵} → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸))
7170anbi2d 630 . . . . . . . . . . . . . . 15 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7268, 71raleqbidv 3403 . . . . . . . . . . . . . 14 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
73723ad2ant2 1130 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7473adantr 483 . . . . . . . . . . . 12 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7574adantr 483 . . . . . . . . . . 11 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7666, 75mpbird 259 . . . . . . . . . 10 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))
77763mix3d 1334 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸)))
78 sneq 4579 . . . . . . . . . . . . . . 15 ( = 𝐴 → {} = {𝐴})
7978difeq2d 4101 . . . . . . . . . . . . . 14 ( = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}))
80 preq2 4672 . . . . . . . . . . . . . . . 16 ( = 𝐴 → {𝑣, } = {𝑣, 𝐴})
8180eleq1d 2899 . . . . . . . . . . . . . . 15 ( = 𝐴 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐴} ∈ 𝐸))
82 reueq1 3409 . . . . . . . . . . . . . . . 16 (({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
8379, 82syl 17 . . . . . . . . . . . . . . 15 ( = 𝐴 → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
8481, 83anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝐴 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
8579, 84raleqbidv 3403 . . . . . . . . . . . . 13 ( = 𝐴 → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
86 sneq 4579 . . . . . . . . . . . . . . 15 ( = 𝐵 → {} = {𝐵})
8786difeq2d 4101 . . . . . . . . . . . . . 14 ( = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}))
88 preq2 4672 . . . . . . . . . . . . . . . 16 ( = 𝐵 → {𝑣, } = {𝑣, 𝐵})
8988eleq1d 2899 . . . . . . . . . . . . . . 15 ( = 𝐵 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐵} ∈ 𝐸))
90 reueq1 3409 . . . . . . . . . . . . . . . 16 (({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸))
9187, 90syl 17 . . . . . . . . . . . . . . 15 ( = 𝐵 → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸))
9289, 91anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝐵 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸)))
9387, 92raleqbidv 3403 . . . . . . . . . . . . 13 ( = 𝐵 → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸)))
94 sneq 4579 . . . . . . . . . . . . . . 15 ( = 𝐶 → {} = {𝐶})
9594difeq2d 4101 . . . . . . . . . . . . . 14 ( = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}))
96 preq2 4672 . . . . . . . . . . . . . . . 16 ( = 𝐶 → {𝑣, } = {𝑣, 𝐶})
9796eleq1d 2899 . . . . . . . . . . . . . . 15 ( = 𝐶 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐶} ∈ 𝐸))
98 reueq1 3409 . . . . . . . . . . . . . . . 16 (({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))
9995, 98syl 17 . . . . . . . . . . . . . . 15 ( = 𝐶 → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))
10097, 99anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝐶 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸)))
10195, 100raleqbidv 3403 . . . . . . . . . . . . 13 ( = 𝐶 → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸)))
10285, 93, 101rextpg 4637 . . . . . . . . . . . 12 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
1031023ad2ant1 1129 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
104103adantr 483 . . . . . . . . . 10 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
105104adantr 483 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
10677, 105mpbird 259 . . . . . . . 8 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
107106ex 415 . . . . . . 7 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1086, 107sylbid 242 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
109108expcom 416 . . . . 5 (𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
110109com23 86 . . . 4 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1111, 110mpcom 38 . . 3 (𝐺 ∈ FriendGraph → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
112111com12 32 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
113 difeq1 4094 . . . . . 6 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑉 ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {}))
114 reueq1 3409 . . . . . . . 8 ((𝑉 ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {}) → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
115113, 114syl 17 . . . . . . 7 (𝑉 = {𝐴, 𝐵, 𝐶} → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
116115anbi2d 630 . . . . . 6 (𝑉 = {𝐴, 𝐵, 𝐶} → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
117113, 116raleqbidv 3403 . . . . 5 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
118117rexeqbi1dv 3406 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
119118imbi2d 343 . . 3 (𝑉 = {𝐴, 𝐵, 𝐶} → ((𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)) ↔ (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1201193ad2ant3 1131 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → ((𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)) ↔ (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
121112, 120mpbird 259 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1082  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  ∃!wreu 3142  cdif 3935  {csn 4569  {cpr 4571  {ctp 4573  cfv 6357  Vtxcvtx 26783  Edgcedg 26834  USGraphcusgr 26936   FriendGraph cfrgr 28039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-hash 13694  df-edg 26835  df-umgr 26870  df-usgr 26938  df-frgr 28040
This theorem is referenced by:  1to3vfriswmgr  28061
  Copyright terms: Public domain W3C validator