MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  3vfriswmgr Structured version   Visualization version   GIF version

Theorem 3vfriswmgr 30207
Description: Every friendship graph with three (different) vertices is a windmill graph. (Contributed by Alexander van der Vekens, 6-Oct-2017.) (Revised by AV, 31-Mar-2021.)
Hypotheses
Ref Expression
3vfriswmgr.v 𝑉 = (Vtx‘𝐺)
3vfriswmgr.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
3vfriswmgr (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑤,𝐴   𝑤,𝐵   𝑤,𝐶   𝑤,𝐸   𝑤,𝐺   𝑤,𝑉   𝑤,𝑋   𝑤,𝑌   𝐴,,𝑣,𝑤   𝐵,,𝑣   𝐶,,𝑣   ,𝐸,𝑣   ,𝑉,𝑣
Allowed substitution hints:   𝐺(𝑣,)   𝑋(𝑣,)   𝑌(𝑣,)   𝑍(𝑤,𝑣,)

Proof of Theorem 3vfriswmgr
StepHypRef Expression
1 frgrusgr 30190 . . . 4 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
2 3vfriswmgr.v . . . . . . . . . 10 𝑉 = (Vtx‘𝐺)
3 3vfriswmgr.e . . . . . . . . . 10 𝐸 = (Edg‘𝐺)
42, 3frgr3v 30204 . . . . . . . . 9 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶)) → ((𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))))
54exp4b 430 . . . . . . . 8 ((𝐴𝑋𝐵𝑌𝐶𝑍) → ((𝐴𝐵𝐴𝐶𝐵𝐶) → (𝑉 = {𝐴, 𝐵, 𝐶} → (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸))))))
653imp1 1348 . . . . . . 7 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph ↔ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)))
7 prcom 4696 . . . . . . . . . . . . . . . . . 18 {𝐶, 𝐴} = {𝐴, 𝐶}
87eleq1i 2819 . . . . . . . . . . . . . . . . 17 ({𝐶, 𝐴} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸)
98biimpi 216 . . . . . . . . . . . . . . . 16 ({𝐶, 𝐴} ∈ 𝐸 → {𝐴, 𝐶} ∈ 𝐸)
1093ad2ant3 1135 . . . . . . . . . . . . . . 15 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐴, 𝐶} ∈ 𝐸)
1110adantl 481 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → {𝐴, 𝐶} ∈ 𝐸)
12 simpl11 1249 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐴𝑋)
13 simpl12 1250 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐵𝑌)
14 simp1 1136 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐴𝐵)
15143ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝐴𝐵)
1615adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐴𝐵)
1712, 13, 163jca 1128 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐴𝑋𝐵𝑌𝐴𝐵))
18 simp3 1138 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝑉 = {𝐴, 𝐵, 𝐶})
1918anim1i 615 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph))
2017, 19jca 511 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → ((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)))
21 simp1 1136 . . . . . . . . . . . . . . 15 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐴, 𝐵} ∈ 𝐸)
222, 33vfriswmgrlem 30206 . . . . . . . . . . . . . . . 16 (((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐴, 𝐵} ∈ 𝐸 → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
2322imp 406 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐴𝐵) ∧ (𝑉 = {𝐴, 𝐵, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐴, 𝐵} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
2420, 21, 23syl2an 596 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)
2511, 24jca 511 . . . . . . . . . . . . 13 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
26 simpr2 1196 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → {𝐵, 𝐶} ∈ 𝐸)
27 necom 2978 . . . . . . . . . . . . . . . . . . . . 21 (𝐴𝐵𝐵𝐴)
2827biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝐴𝐵𝐵𝐴)
29283ad2ant1 1133 . . . . . . . . . . . . . . . . . . 19 ((𝐴𝐵𝐴𝐶𝐵𝐶) → 𝐵𝐴)
30293ad2ant2 1134 . . . . . . . . . . . . . . . . . 18 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝐵𝐴)
3130adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → 𝐵𝐴)
3213, 12, 313jca 1128 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐵𝑌𝐴𝑋𝐵𝐴))
33 tpcoma 4714 . . . . . . . . . . . . . . . . . 18 {𝐴, 𝐵, 𝐶} = {𝐵, 𝐴, 𝐶}
3418, 33eqtrdi 2780 . . . . . . . . . . . . . . . . 17 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → 𝑉 = {𝐵, 𝐴, 𝐶})
3534anim1i 615 . . . . . . . . . . . . . . . 16 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph))
3632, 35jca 511 . . . . . . . . . . . . . . 15 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → ((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)))
37 prcom 4696 . . . . . . . . . . . . . . . . . 18 {𝐴, 𝐵} = {𝐵, 𝐴}
3837eleq1i 2819 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} ∈ 𝐸 ↔ {𝐵, 𝐴} ∈ 𝐸)
3938biimpi 216 . . . . . . . . . . . . . . . 16 ({𝐴, 𝐵} ∈ 𝐸 → {𝐵, 𝐴} ∈ 𝐸)
40393ad2ant1 1133 . . . . . . . . . . . . . . 15 (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → {𝐵, 𝐴} ∈ 𝐸)
412, 33vfriswmgrlem 30206 . . . . . . . . . . . . . . . . 17 (((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) → ({𝐵, 𝐴} ∈ 𝐸 → ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸))
4241imp 406 . . . . . . . . . . . . . . . 16 ((((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐵, 𝐴} ∈ 𝐸) → ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸)
43 reueq1 3388 . . . . . . . . . . . . . . . . 17 ({𝐴, 𝐵} = {𝐵, 𝐴} → (∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸))
4437, 43ax-mp 5 . . . . . . . . . . . . . . . 16 (∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐵, 𝐴} {𝐵, 𝑤} ∈ 𝐸)
4542, 44sylibr 234 . . . . . . . . . . . . . . 15 ((((𝐵𝑌𝐴𝑋𝐵𝐴) ∧ (𝑉 = {𝐵, 𝐴, 𝐶} ∧ 𝐺 ∈ USGraph)) ∧ {𝐵, 𝐴} ∈ 𝐸) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)
4636, 40, 45syl2an 596 . . . . . . . . . . . . . 14 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)
4726, 46jca 511 . . . . . . . . . . . . 13 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))
4825, 47jca 511 . . . . . . . . . . . 12 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)))
49 preq1 4697 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → {𝑣, 𝐶} = {𝐴, 𝐶})
5049eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → ({𝑣, 𝐶} ∈ 𝐸 ↔ {𝐴, 𝐶} ∈ 𝐸))
51 preq1 4697 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐴 → {𝑣, 𝑤} = {𝐴, 𝑤})
5251eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐴 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝐴, 𝑤} ∈ 𝐸))
5352reubidv 3372 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐴 → (∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸))
5450, 53anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐴 → (({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ ({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸)))
55 preq1 4697 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → {𝑣, 𝐶} = {𝐵, 𝐶})
5655eleq1d 2813 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → ({𝑣, 𝐶} ∈ 𝐸 ↔ {𝐵, 𝐶} ∈ 𝐸))
57 preq1 4697 . . . . . . . . . . . . . . . . . . . 20 (𝑣 = 𝐵 → {𝑣, 𝑤} = {𝐵, 𝑤})
5857eleq1d 2813 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝐵 → ({𝑣, 𝑤} ∈ 𝐸 ↔ {𝐵, 𝑤} ∈ 𝐸))
5958reubidv 3372 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝐵 → (∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))
6056, 59anbi12d 632 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝐵 → (({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸)))
6154, 60ralprg 4660 . . . . . . . . . . . . . . . 16 ((𝐴𝑋𝐵𝑌) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
62613adant3 1132 . . . . . . . . . . . . . . 15 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
63623ad2ant1 1133 . . . . . . . . . . . . . 14 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
6564adantr 480 . . . . . . . . . . . 12 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸) ↔ (({𝐴, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐴, 𝑤} ∈ 𝐸) ∧ ({𝐵, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝐵, 𝑤} ∈ 𝐸))))
6648, 65mpbird 257 . . . . . . . . . . 11 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸))
67 diftpsn3 4766 . . . . . . . . . . . . . . . 16 ((𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
68673adant1 1130 . . . . . . . . . . . . . . 15 ((𝐴𝐵𝐴𝐶𝐵𝐶) → ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵})
69 reueq1 3388 . . . . . . . . . . . . . . . . 17 (({𝐴, 𝐵, 𝐶} ∖ {𝐶}) = {𝐴, 𝐵} → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸))
7068, 69syl 17 . . . . . . . . . . . . . . . 16 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸))
7170anbi2d 630 . . . . . . . . . . . . . . 15 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7268, 71raleqbidv 3319 . . . . . . . . . . . . . 14 ((𝐴𝐵𝐴𝐶𝐵𝐶) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
73723ad2ant2 1134 . . . . . . . . . . . . 13 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7473adantr 480 . . . . . . . . . . . 12 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7574adantr 480 . . . . . . . . . . 11 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ {𝐴, 𝐵} ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ {𝐴, 𝐵} {𝑣, 𝑤} ∈ 𝐸)))
7666, 75mpbird 257 . . . . . . . . . 10 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))
77763mix3d 1339 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸)))
78 sneq 4599 . . . . . . . . . . . . . . 15 ( = 𝐴 → {} = {𝐴})
7978difeq2d 4089 . . . . . . . . . . . . . 14 ( = 𝐴 → ({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}))
80 preq2 4698 . . . . . . . . . . . . . . . 16 ( = 𝐴 → {𝑣, } = {𝑣, 𝐴})
8180eleq1d 2813 . . . . . . . . . . . . . . 15 ( = 𝐴 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐴} ∈ 𝐸))
82 reueq1 3388 . . . . . . . . . . . . . . . 16 (({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐴}) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
8379, 82syl 17 . . . . . . . . . . . . . . 15 ( = 𝐴 → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸))
8481, 83anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝐴 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
8579, 84raleqbidv 3319 . . . . . . . . . . . . 13 ( = 𝐴 → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸)))
86 sneq 4599 . . . . . . . . . . . . . . 15 ( = 𝐵 → {} = {𝐵})
8786difeq2d 4089 . . . . . . . . . . . . . 14 ( = 𝐵 → ({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}))
88 preq2 4698 . . . . . . . . . . . . . . . 16 ( = 𝐵 → {𝑣, } = {𝑣, 𝐵})
8988eleq1d 2813 . . . . . . . . . . . . . . 15 ( = 𝐵 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐵} ∈ 𝐸))
90 reueq1 3388 . . . . . . . . . . . . . . . 16 (({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐵}) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸))
9187, 90syl 17 . . . . . . . . . . . . . . 15 ( = 𝐵 → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸))
9289, 91anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝐵 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸)))
9387, 92raleqbidv 3319 . . . . . . . . . . . . 13 ( = 𝐵 → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸)))
94 sneq 4599 . . . . . . . . . . . . . . 15 ( = 𝐶 → {} = {𝐶})
9594difeq2d 4089 . . . . . . . . . . . . . 14 ( = 𝐶 → ({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}))
96 preq2 4698 . . . . . . . . . . . . . . . 16 ( = 𝐶 → {𝑣, } = {𝑣, 𝐶})
9796eleq1d 2813 . . . . . . . . . . . . . . 15 ( = 𝐶 → ({𝑣, } ∈ 𝐸 ↔ {𝑣, 𝐶} ∈ 𝐸))
98 reueq1 3388 . . . . . . . . . . . . . . . 16 (({𝐴, 𝐵, 𝐶} ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {𝐶}) → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))
9995, 98syl 17 . . . . . . . . . . . . . . 15 ( = 𝐶 → (∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))
10097, 99anbi12d 632 . . . . . . . . . . . . . 14 ( = 𝐶 → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸)))
10195, 100raleqbidv 3319 . . . . . . . . . . . . 13 ( = 𝐶 → (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸)))
10285, 93, 101rextpg 4663 . . . . . . . . . . . 12 ((𝐴𝑋𝐵𝑌𝐶𝑍) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
1031023ad2ant1 1133 . . . . . . . . . . 11 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
104103adantr 480 . . . . . . . . . 10 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
105104adantr 480 . . . . . . . . 9 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → (∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ (∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴})({𝑣, 𝐴} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐴}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵})({𝑣, 𝐵} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐵}){𝑣, 𝑤} ∈ 𝐸) ∨ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶})({𝑣, 𝐶} ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {𝐶}){𝑣, 𝑤} ∈ 𝐸))))
10677, 105mpbird 257 . . . . . . . 8 (((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) ∧ ({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸)) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
107106ex 412 . . . . . . 7 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (({𝐴, 𝐵} ∈ 𝐸 ∧ {𝐵, 𝐶} ∈ 𝐸 ∧ {𝐶, 𝐴} ∈ 𝐸) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
1086, 107sylbid 240 . . . . . 6 ((((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) ∧ 𝐺 ∈ USGraph) → (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
109108expcom 413 . . . . 5 (𝐺 ∈ USGraph → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
110109com23 86 . . . 4 (𝐺 ∈ USGraph → (𝐺 ∈ FriendGraph → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1111, 110mpcom 38 . . 3 (𝐺 ∈ FriendGraph → (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
112111com12 32 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
113 difeq1 4082 . . . . . 6 (𝑉 = {𝐴, 𝐵, 𝐶} → (𝑉 ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {}))
114 reueq1 3388 . . . . . . . 8 ((𝑉 ∖ {}) = ({𝐴, 𝐵, 𝐶} ∖ {}) → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
115113, 114syl 17 . . . . . . 7 (𝑉 = {𝐴, 𝐵, 𝐶} → (∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸 ↔ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))
116115anbi2d 630 . . . . . 6 (𝑉 = {𝐴, 𝐵, 𝐶} → (({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
117113, 116raleqbidv 3319 . . . . 5 (𝑉 = {𝐴, 𝐵, 𝐶} → (∀𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
118117rexeqbi1dv 3312 . . . 4 (𝑉 = {𝐴, 𝐵, 𝐶} → (∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸) ↔ ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
119118imbi2d 340 . . 3 (𝑉 = {𝐴, 𝐵, 𝐶} → ((𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)) ↔ (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
1201193ad2ant3 1135 . 2 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → ((𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)) ↔ (𝐺 ∈ FriendGraph → ∃ ∈ {𝐴, 𝐵, 𝐶}∀𝑣 ∈ ({𝐴, 𝐵, 𝐶} ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ ({𝐴, 𝐵, 𝐶} ∖ {}){𝑣, 𝑤} ∈ 𝐸))))
121112, 120mpbird 257 1 (((𝐴𝑋𝐵𝑌𝐶𝑍) ∧ (𝐴𝐵𝐴𝐶𝐵𝐶) ∧ 𝑉 = {𝐴, 𝐵, 𝐶}) → (𝐺 ∈ FriendGraph → ∃𝑉𝑣 ∈ (𝑉 ∖ {})({𝑣, } ∈ 𝐸 ∧ ∃!𝑤 ∈ (𝑉 ∖ {}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  ∃!wreu 3352  cdif 3911  {csn 4589  {cpr 4591  {ctp 4593  cfv 6511  Vtxcvtx 28923  Edgcedg 28974  USGraphcusgr 29076   FriendGraph cfrgr 30187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-hash 14296  df-edg 28975  df-umgr 29010  df-usgr 29078  df-frgr 30188
This theorem is referenced by:  1to3vfriswmgr  30209
  Copyright terms: Public domain W3C validator