Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > preq12d | Structured version Visualization version GIF version |
Description: Equality deduction for unordered pairs. (Contributed by NM, 19-Oct-2012.) |
Ref | Expression |
---|---|
preq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
preq12d.2 | ⊢ (𝜑 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
preq12d | ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | preq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | preq12d.2 | . 2 ⊢ (𝜑 → 𝐶 = 𝐷) | |
3 | preq12 4668 | . 2 ⊢ ((𝐴 = 𝐵 ∧ 𝐶 = 𝐷) → {𝐴, 𝐶} = {𝐵, 𝐷}) | |
4 | 1, 2, 3 | syl2anc 583 | 1 ⊢ (𝜑 → {𝐴, 𝐶} = {𝐵, 𝐷}) |
Copyright terms: Public domain | W3C validator |