Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1 Structured version   Visualization version   GIF version

Theorem lmod1 45833
Description: The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦   𝑥,𝑀,𝑦

Proof of Theorem lmod1
Dummy variables 𝑟 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2738 . . . . 5 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18682 . . . 4 (𝐼𝑉 → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
3 fvex 6787 . . . . . . 7 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
4 lmod1.m . . . . . . . . 9 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
5 snex 5354 . . . . . . . . . . . . 13 {𝐼} ∈ V
61grpbase 16996 . . . . . . . . . . . . 13 ({𝐼} ∈ V → {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
75, 6ax-mp 5 . . . . . . . . . . . 12 {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
87opeq2i 4808 . . . . . . . . . . 11 ⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
9 tpeq1 4678 . . . . . . . . . . 11 (⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩})
108, 9ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩}
1110uneq1i 4093 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
124, 11eqtri 2766 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
1312lmodbase 17036 . . . . . . 7 ((Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀))
143, 13ax-mp 5 . . . . . 6 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀)
1514eqcomi 2747 . . . . 5 (Base‘𝑀) = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
16 fvex 6787 . . . . . . 7 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
17 snex 5354 . . . . . . . . . . . . 13 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
181grpplusg 16998 . . . . . . . . . . . . 13 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
1917, 18ax-mp 5 . . . . . . . . . . . 12 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2019opeq2i 4808 . . . . . . . . . . 11 ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
21 tpeq2 4679 . . . . . . . . . . 11 (⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩})
2220, 21ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩}
2322uneq1i 4093 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
244, 23eqtri 2766 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
2524lmodplusg 17037 . . . . . . 7 ((+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀))
2616, 25ax-mp 5 . . . . . 6 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀)
2726eqcomi 2747 . . . . 5 (+g𝑀) = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2815, 27grpprop 18595 . . . 4 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
292, 28sylibr 233 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3029adantr 481 . 2 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ Grp)
314lmodsca 17038 . . . . 5 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀))
3231eqcomd 2744 . . . 4 (𝑅 ∈ Ring → (Scalar‘𝑀) = 𝑅)
3332adantl 482 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅)
34 simpr 485 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3533, 34eqeltrd 2839 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) ∈ Ring)
3633fveq2d 6778 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (Base‘(Scalar‘𝑀)) = (Base‘𝑅))
3736eleq2d 2824 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑞 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑞 ∈ (Base‘𝑅)))
3836eleq2d 2824 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑟 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑟 ∈ (Base‘𝑅)))
3937, 38anbi12d 631 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) ↔ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))))
40 simpll 764 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼𝑉)
41 simplr 766 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
42 simprr 770 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅))
4340, 41, 423jca 1127 . . . . . . . . 9 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)))
444lmod1lem1 45828 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
4543, 44syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
464lmod1lem2 45829 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4743, 46syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
484lmod1lem3 45830 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4945, 47, 483jca 1127 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
504lmod1lem4 45831 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
514lmod1lem5 45832 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5251adantr 481 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5349, 50, 52jca32 516 . . . . . 6 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
5453ex 413 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5539, 54sylbid 239 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5655ralrimivv 3122 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
57 oveq2 7283 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑤(+g𝑀)𝑥) = (𝑤(+g𝑀)𝐼))
5857oveq2d 7291 . . . . . . . . . . 11 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)))
59 oveq2 7283 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)𝑥) = (𝑟( ·𝑠𝑀)𝐼))
6059oveq2d 7291 . . . . . . . . . . 11 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
6158, 60eqeq12d 2754 . . . . . . . . . 10 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ↔ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
62613anbi2d 1440 . . . . . . . . 9 (𝑥 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)))))
6362anbi1d 630 . . . . . . . 8 (𝑥 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6463ralbidv 3112 . . . . . . 7 (𝑥 = 𝐼 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6564ralsng 4609 . . . . . 6 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6665adantr 481 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
67 oveq2 7283 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)𝑤) = (𝑟( ·𝑠𝑀)𝐼))
6867eleq1d 2823 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ↔ (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼}))
69 oveq1 7282 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑤(+g𝑀)𝐼) = (𝐼(+g𝑀)𝐼))
7069oveq2d 7291 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)))
7167oveq1d 7290 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7270, 71eqeq12d 2754 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ↔ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
73 oveq2 7283 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
74 oveq2 7283 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)𝐼))
7574, 67oveq12d 7293 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7673, 75eqeq12d 2754 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
7768, 72, 763anbi123d 1435 . . . . . . . 8 (𝑤 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))))
78 oveq2 7283 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
7967oveq2d 7291 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
8078, 79eqeq12d 2754 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼))))
81 oveq2 7283 . . . . . . . . . 10 (𝑤 = 𝐼 → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼))
82 id 22 . . . . . . . . . 10 (𝑤 = 𝐼𝑤 = 𝐼)
8381, 82eqeq12d 2754 . . . . . . . . 9 (𝑤 = 𝐼 → (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤 ↔ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))
8480, 83anbi12d 631 . . . . . . . 8 (𝑤 = 𝐼 → ((((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤) ↔ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
8577, 84anbi12d 631 . . . . . . 7 (𝑤 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8685ralsng 4609 . . . . . 6 (𝐼𝑉 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8786adantr 481 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8866, 87bitrd 278 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
89882ralbidv 3129 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
9056, 89mpbird 256 . 2 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)))
914lmodbase 17036 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
925, 91ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
93 eqid 2738 . . 3 (+g𝑀) = (+g𝑀)
94 eqid 2738 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
95 eqid 2738 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
96 eqid 2738 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
97 eqid 2738 . . 3 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
98 eqid 2738 . . 3 (.r‘(Scalar‘𝑀)) = (.r‘(Scalar‘𝑀))
99 eqid 2738 . . 3 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
10092, 93, 94, 95, 96, 97, 98, 99islmod 20127 . 2 (𝑀 ∈ LMod ↔ (𝑀 ∈ Grp ∧ (Scalar‘𝑀) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
10130, 35, 90, 100syl3anbrc 1342 1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086   = wceq 1539  wcel 2106  wral 3064  Vcvv 3432  cun 3885  {csn 4561  {cpr 4563  {ctp 4565  cop 4567  cfv 6433  (class class class)co 7275  cmpo 7277  ndxcnx 16894  Basecbs 16912  +gcplusg 16962  .rcmulr 16963  Scalarcsca 16965   ·𝑠 cvsca 16966  Grpcgrp 18577  1rcur 19737  Ringcrg 19783  LModclmod 20123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-plusg 16975  df-sca 16978  df-vsca 16979  df-0g 17152  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-grp 18580  df-mgp 19721  df-ur 19738  df-ring 19785  df-lmod 20125
This theorem is referenced by:  lmod1zr  45834
  Copyright terms: Public domain W3C validator