Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1 Structured version   Visualization version   GIF version

Theorem lmod1 46563
Description: The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦   𝑥,𝑀,𝑦

Proof of Theorem lmod1
Dummy variables 𝑟 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . . . 5 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18854 . . . 4 (𝐼𝑉 → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
3 fvex 6855 . . . . . . 7 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
4 lmod1.m . . . . . . . . 9 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
5 snex 5388 . . . . . . . . . . . . 13 {𝐼} ∈ V
61grpbase 17167 . . . . . . . . . . . . 13 ({𝐼} ∈ V → {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
75, 6ax-mp 5 . . . . . . . . . . . 12 {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
87opeq2i 4834 . . . . . . . . . . 11 ⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
9 tpeq1 4703 . . . . . . . . . . 11 (⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩})
108, 9ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩}
1110uneq1i 4119 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
124, 11eqtri 2764 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
1312lmodbase 17207 . . . . . . 7 ((Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀))
143, 13ax-mp 5 . . . . . 6 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀)
1514eqcomi 2745 . . . . 5 (Base‘𝑀) = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
16 fvex 6855 . . . . . . 7 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
17 snex 5388 . . . . . . . . . . . . 13 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
181grpplusg 17169 . . . . . . . . . . . . 13 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
1917, 18ax-mp 5 . . . . . . . . . . . 12 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2019opeq2i 4834 . . . . . . . . . . 11 ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
21 tpeq2 4704 . . . . . . . . . . 11 (⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩})
2220, 21ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩}
2322uneq1i 4119 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
244, 23eqtri 2764 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
2524lmodplusg 17208 . . . . . . 7 ((+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀))
2616, 25ax-mp 5 . . . . . 6 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀)
2726eqcomi 2745 . . . . 5 (+g𝑀) = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2815, 27grpprop 18766 . . . 4 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
292, 28sylibr 233 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3029adantr 481 . 2 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ Grp)
314lmodsca 17209 . . . . 5 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀))
3231eqcomd 2742 . . . 4 (𝑅 ∈ Ring → (Scalar‘𝑀) = 𝑅)
3332adantl 482 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅)
34 simpr 485 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3533, 34eqeltrd 2838 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) ∈ Ring)
3633fveq2d 6846 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (Base‘(Scalar‘𝑀)) = (Base‘𝑅))
3736eleq2d 2823 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑞 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑞 ∈ (Base‘𝑅)))
3836eleq2d 2823 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑟 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑟 ∈ (Base‘𝑅)))
3937, 38anbi12d 631 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) ↔ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))))
40 simpll 765 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼𝑉)
41 simplr 767 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
42 simprr 771 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅))
4340, 41, 423jca 1128 . . . . . . . . 9 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)))
444lmod1lem1 46558 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
4543, 44syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
464lmod1lem2 46559 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4743, 46syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
484lmod1lem3 46560 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4945, 47, 483jca 1128 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
504lmod1lem4 46561 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
514lmod1lem5 46562 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5251adantr 481 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5349, 50, 52jca32 516 . . . . . 6 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
5453ex 413 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5539, 54sylbid 239 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5655ralrimivv 3195 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
57 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑤(+g𝑀)𝑥) = (𝑤(+g𝑀)𝐼))
5857oveq2d 7373 . . . . . . . . . . 11 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)))
59 oveq2 7365 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)𝑥) = (𝑟( ·𝑠𝑀)𝐼))
6059oveq2d 7373 . . . . . . . . . . 11 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
6158, 60eqeq12d 2752 . . . . . . . . . 10 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ↔ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
62613anbi2d 1441 . . . . . . . . 9 (𝑥 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)))))
6362anbi1d 630 . . . . . . . 8 (𝑥 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6463ralbidv 3174 . . . . . . 7 (𝑥 = 𝐼 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6564ralsng 4634 . . . . . 6 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6665adantr 481 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
67 oveq2 7365 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)𝑤) = (𝑟( ·𝑠𝑀)𝐼))
6867eleq1d 2822 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ↔ (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼}))
69 oveq1 7364 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑤(+g𝑀)𝐼) = (𝐼(+g𝑀)𝐼))
7069oveq2d 7373 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)))
7167oveq1d 7372 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7270, 71eqeq12d 2752 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ↔ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
73 oveq2 7365 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
74 oveq2 7365 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)𝐼))
7574, 67oveq12d 7375 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7673, 75eqeq12d 2752 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
7768, 72, 763anbi123d 1436 . . . . . . . 8 (𝑤 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))))
78 oveq2 7365 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
7967oveq2d 7373 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
8078, 79eqeq12d 2752 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼))))
81 oveq2 7365 . . . . . . . . . 10 (𝑤 = 𝐼 → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼))
82 id 22 . . . . . . . . . 10 (𝑤 = 𝐼𝑤 = 𝐼)
8381, 82eqeq12d 2752 . . . . . . . . 9 (𝑤 = 𝐼 → (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤 ↔ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))
8480, 83anbi12d 631 . . . . . . . 8 (𝑤 = 𝐼 → ((((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤) ↔ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
8577, 84anbi12d 631 . . . . . . 7 (𝑤 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8685ralsng 4634 . . . . . 6 (𝐼𝑉 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8786adantr 481 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8866, 87bitrd 278 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
89882ralbidv 3212 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
9056, 89mpbird 256 . 2 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)))
914lmodbase 17207 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
925, 91ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
93 eqid 2736 . . 3 (+g𝑀) = (+g𝑀)
94 eqid 2736 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
95 eqid 2736 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
96 eqid 2736 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
97 eqid 2736 . . 3 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
98 eqid 2736 . . 3 (.r‘(Scalar‘𝑀)) = (.r‘(Scalar‘𝑀))
99 eqid 2736 . . 3 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
10092, 93, 94, 95, 96, 97, 98, 99islmod 20326 . 2 (𝑀 ∈ LMod ↔ (𝑀 ∈ Grp ∧ (Scalar‘𝑀) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
10130, 35, 90, 100syl3anbrc 1343 1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  Vcvv 3445  cun 3908  {csn 4586  {cpr 4588  {ctp 4590  cop 4592  cfv 6496  (class class class)co 7357  cmpo 7359  ndxcnx 17065  Basecbs 17083  +gcplusg 17133  .rcmulr 17134  Scalarcsca 17136   ·𝑠 cvsca 17137  Grpcgrp 18748  1rcur 19913  Ringcrg 19964  LModclmod 20322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-sca 17149  df-vsca 17150  df-0g 17323  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-grp 18751  df-mgp 19897  df-ur 19914  df-ring 19966  df-lmod 20324
This theorem is referenced by:  lmod1zr  46564
  Copyright terms: Public domain W3C validator