Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lmod1 Structured version   Visualization version   GIF version

Theorem lmod1 48410
Description: The (smallest) structure representing a zero module over an arbitrary ring. (Contributed by AV, 29-Apr-2019.)
Hypothesis
Ref Expression
lmod1.m 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
Assertion
Ref Expression
lmod1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Distinct variable groups:   𝑥,𝐼,𝑦   𝑥,𝑅,𝑦   𝑥,𝑉,𝑦   𝑥,𝑀,𝑦

Proof of Theorem lmod1
Dummy variables 𝑟 𝑞 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . . 5 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}
21grp1 18985 . . . 4 (𝐼𝑉 → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
3 fvex 6878 . . . . . . 7 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
4 lmod1.m . . . . . . . . 9 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
5 snex 5399 . . . . . . . . . . . . 13 {𝐼} ∈ V
61grpbase 17258 . . . . . . . . . . . . 13 ({𝐼} ∈ V → {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
75, 6ax-mp 5 . . . . . . . . . . . 12 {𝐼} = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
87opeq2i 4849 . . . . . . . . . . 11 ⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
9 tpeq1 4714 . . . . . . . . . . 11 (⟨(Base‘ndx), {𝐼}⟩ = ⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩})
108, 9ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩}
1110uneq1i 4135 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
124, 11eqtri 2753 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
1312lmodbase 17295 . . . . . . 7 ((Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀))
143, 13ax-mp 5 . . . . . 6 (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (Base‘𝑀)
1514eqcomi 2739 . . . . 5 (Base‘𝑀) = (Base‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
16 fvex 6878 . . . . . . 7 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V
17 snex 5399 . . . . . . . . . . . . 13 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V
181grpplusg 17259 . . . . . . . . . . . . 13 ({⟨⟨𝐼, 𝐼⟩, 𝐼⟩} ∈ V → {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}))
1917, 18ax-mp 5 . . . . . . . . . . . 12 {⟨⟨𝐼, 𝐼⟩, 𝐼⟩} = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2019opeq2i 4849 . . . . . . . . . . 11 ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩
21 tpeq2 4715 . . . . . . . . . . 11 (⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩ = ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩ → {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩})
2220, 21ax-mp 5 . . . . . . . . . 10 {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} = {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩}
2322uneq1i 4135 . . . . . . . . 9 ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩}) = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
244, 23eqtri 2753 . . . . . . . 8 𝑀 = ({⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})⟩, ⟨(Scalar‘ndx), 𝑅⟩} ∪ {⟨( ·𝑠 ‘ndx), (𝑥 ∈ (Base‘𝑅), 𝑦 ∈ {𝐼} ↦ 𝑦)⟩})
2524lmodplusg 17296 . . . . . . 7 ((+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) ∈ V → (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀))
2616, 25ax-mp 5 . . . . . 6 (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩}) = (+g𝑀)
2726eqcomi 2739 . . . . 5 (+g𝑀) = (+g‘{⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩})
2815, 27grpprop 18890 . . . 4 (𝑀 ∈ Grp ↔ {⟨(Base‘ndx), {𝐼}⟩, ⟨(+g‘ndx), {⟨⟨𝐼, 𝐼⟩, 𝐼⟩}⟩} ∈ Grp)
292, 28sylibr 234 . . 3 (𝐼𝑉𝑀 ∈ Grp)
3029adantr 480 . 2 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ Grp)
314lmodsca 17297 . . . . 5 (𝑅 ∈ Ring → 𝑅 = (Scalar‘𝑀))
3231eqcomd 2736 . . . 4 (𝑅 ∈ Ring → (Scalar‘𝑀) = 𝑅)
3332adantl 481 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) = 𝑅)
34 simpr 484 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3533, 34eqeltrd 2829 . 2 ((𝐼𝑉𝑅 ∈ Ring) → (Scalar‘𝑀) ∈ Ring)
3633fveq2d 6869 . . . . . . 7 ((𝐼𝑉𝑅 ∈ Ring) → (Base‘(Scalar‘𝑀)) = (Base‘𝑅))
3736eleq2d 2815 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑞 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑞 ∈ (Base‘𝑅)))
3836eleq2d 2815 . . . . . 6 ((𝐼𝑉𝑅 ∈ Ring) → (𝑟 ∈ (Base‘(Scalar‘𝑀)) ↔ 𝑟 ∈ (Base‘𝑅)))
3937, 38anbi12d 632 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) ↔ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))))
40 simpll 766 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝐼𝑉)
41 simplr 768 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑅 ∈ Ring)
42 simprr 772 . . . . . . . . . 10 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → 𝑟 ∈ (Base‘𝑅))
4340, 41, 423jca 1128 . . . . . . . . 9 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)))
444lmod1lem1 48405 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
4543, 44syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼})
464lmod1lem2 48406 . . . . . . . . 9 ((𝐼𝑉𝑅 ∈ Ring ∧ 𝑟 ∈ (Base‘𝑅)) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4743, 46syl 17 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
484lmod1lem3 48407 . . . . . . . 8 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
4945, 47, 483jca 1128 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
504lmod1lem4 48408 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
514lmod1lem5 48409 . . . . . . . 8 ((𝐼𝑉𝑅 ∈ Ring) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5251adantr 480 . . . . . . 7 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)
5349, 50, 52jca32 515 . . . . . 6 (((𝐼𝑉𝑅 ∈ Ring) ∧ (𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
5453ex 412 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘𝑅) ∧ 𝑟 ∈ (Base‘𝑅)) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5539, 54sylbid 240 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → ((𝑞 ∈ (Base‘(Scalar‘𝑀)) ∧ 𝑟 ∈ (Base‘(Scalar‘𝑀))) → (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
5655ralrimivv 3180 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
57 oveq2 7402 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑤(+g𝑀)𝑥) = (𝑤(+g𝑀)𝐼))
5857oveq2d 7410 . . . . . . . . . . 11 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)))
59 oveq2 7402 . . . . . . . . . . . 12 (𝑥 = 𝐼 → (𝑟( ·𝑠𝑀)𝑥) = (𝑟( ·𝑠𝑀)𝐼))
6059oveq2d 7410 . . . . . . . . . . 11 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
6158, 60eqeq12d 2746 . . . . . . . . . 10 (𝑥 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ↔ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
62613anbi2d 1443 . . . . . . . . 9 (𝑥 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)))))
6362anbi1d 631 . . . . . . . 8 (𝑥 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6463ralbidv 3158 . . . . . . 7 (𝑥 = 𝐼 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6564ralsng 4647 . . . . . 6 (𝐼𝑉 → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
6665adantr 480 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
67 oveq2 7402 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)𝑤) = (𝑟( ·𝑠𝑀)𝐼))
6867eleq1d 2814 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ↔ (𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼}))
69 oveq1 7401 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑤(+g𝑀)𝐼) = (𝐼(+g𝑀)𝐼))
7069oveq2d 7410 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)))
7167oveq1d 7409 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7270, 71eqeq12d 2746 . . . . . . . . 9 (𝑤 = 𝐼 → ((𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ↔ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
73 oveq2 7402 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
74 oveq2 7402 . . . . . . . . . . 11 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)𝐼))
7574, 67oveq12d 7412 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))
7673, 75eqeq12d 2746 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))))
7768, 72, 763anbi123d 1438 . . . . . . . 8 (𝑤 = 𝐼 → (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ↔ ((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)))))
78 oveq2 7402 . . . . . . . . . 10 (𝑤 = 𝐼 → ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼))
7967oveq2d 7410 . . . . . . . . . 10 (𝑤 = 𝐼 → (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)))
8078, 79eqeq12d 2746 . . . . . . . . 9 (𝑤 = 𝐼 → (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ↔ ((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼))))
81 oveq2 7402 . . . . . . . . . 10 (𝑤 = 𝐼 → ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼))
82 id 22 . . . . . . . . . 10 (𝑤 = 𝐼𝑤 = 𝐼)
8381, 82eqeq12d 2746 . . . . . . . . 9 (𝑤 = 𝐼 → (((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤 ↔ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))
8480, 83anbi12d 632 . . . . . . . 8 (𝑤 = 𝐼 → ((((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤) ↔ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼)))
8577, 84anbi12d 632 . . . . . . 7 (𝑤 = 𝐼 → ((((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8685ralsng 4647 . . . . . 6 (𝐼𝑉 → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8786adantr 480 . . . . 5 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
8866, 87bitrd 279 . . . 4 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ (((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
89882ralbidv 3203 . . 3 ((𝐼𝑉𝑅 ∈ Ring) → (∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)) ↔ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))(((𝑟( ·𝑠𝑀)𝐼) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝐼(+g𝑀)𝐼)) = ((𝑟( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = ((𝑞( ·𝑠𝑀)𝐼)(+g𝑀)(𝑟( ·𝑠𝑀)𝐼))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝐼) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝐼)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝐼) = 𝐼))))
9056, 89mpbird 257 . 2 ((𝐼𝑉𝑅 ∈ Ring) → ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤)))
914lmodbase 17295 . . . 4 ({𝐼} ∈ V → {𝐼} = (Base‘𝑀))
925, 91ax-mp 5 . . 3 {𝐼} = (Base‘𝑀)
93 eqid 2730 . . 3 (+g𝑀) = (+g𝑀)
94 eqid 2730 . . 3 ( ·𝑠𝑀) = ( ·𝑠𝑀)
95 eqid 2730 . . 3 (Scalar‘𝑀) = (Scalar‘𝑀)
96 eqid 2730 . . 3 (Base‘(Scalar‘𝑀)) = (Base‘(Scalar‘𝑀))
97 eqid 2730 . . 3 (+g‘(Scalar‘𝑀)) = (+g‘(Scalar‘𝑀))
98 eqid 2730 . . 3 (.r‘(Scalar‘𝑀)) = (.r‘(Scalar‘𝑀))
99 eqid 2730 . . 3 (1r‘(Scalar‘𝑀)) = (1r‘(Scalar‘𝑀))
10092, 93, 94, 95, 96, 97, 98, 99islmod 20776 . 2 (𝑀 ∈ LMod ↔ (𝑀 ∈ Grp ∧ (Scalar‘𝑀) ∈ Ring ∧ ∀𝑞 ∈ (Base‘(Scalar‘𝑀))∀𝑟 ∈ (Base‘(Scalar‘𝑀))∀𝑥 ∈ {𝐼}∀𝑤 ∈ {𝐼} (((𝑟( ·𝑠𝑀)𝑤) ∈ {𝐼} ∧ (𝑟( ·𝑠𝑀)(𝑤(+g𝑀)𝑥)) = ((𝑟( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑥)) ∧ ((𝑞(+g‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = ((𝑞( ·𝑠𝑀)𝑤)(+g𝑀)(𝑟( ·𝑠𝑀)𝑤))) ∧ (((𝑞(.r‘(Scalar‘𝑀))𝑟)( ·𝑠𝑀)𝑤) = (𝑞( ·𝑠𝑀)(𝑟( ·𝑠𝑀)𝑤)) ∧ ((1r‘(Scalar‘𝑀))( ·𝑠𝑀)𝑤) = 𝑤))))
10130, 35, 90, 100syl3anbrc 1344 1 ((𝐼𝑉𝑅 ∈ Ring) → 𝑀 ∈ LMod)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3046  Vcvv 3455  cun 3920  {csn 4597  {cpr 4599  {ctp 4601  cop 4603  cfv 6519  (class class class)co 7394  cmpo 7396  ndxcnx 17169  Basecbs 17185  +gcplusg 17226  .rcmulr 17227  Scalarcsca 17229   ·𝑠 cvsca 17230  Grpcgrp 18871  1rcur 20096  Ringcrg 20148  LModclmod 20772
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5242  ax-sep 5259  ax-nul 5269  ax-pow 5328  ax-pr 5395  ax-un 7718  ax-cnex 11142  ax-resscn 11143  ax-1cn 11144  ax-icn 11145  ax-addcl 11146  ax-addrcl 11147  ax-mulcl 11148  ax-mulrcl 11149  ax-mulcom 11150  ax-addass 11151  ax-mulass 11152  ax-distr 11153  ax-i2m1 11154  ax-1ne0 11155  ax-1rid 11156  ax-rnegex 11157  ax-rrecex 11158  ax-cnre 11159  ax-pre-lttri 11160  ax-pre-lttrn 11161  ax-pre-ltadd 11162  ax-pre-mulgt0 11163
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2880  df-ne 2928  df-nel 3032  df-ral 3047  df-rex 3056  df-rmo 3357  df-reu 3358  df-rab 3412  df-v 3457  df-sbc 3762  df-csb 3871  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-tp 4602  df-op 4604  df-uni 4880  df-iun 4965  df-br 5116  df-opab 5178  df-mpt 5197  df-tr 5223  df-id 5541  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-xp 5652  df-rel 5653  df-cnv 5654  df-co 5655  df-dm 5656  df-rn 5657  df-res 5658  df-ima 5659  df-pred 6282  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-iota 6472  df-fun 6521  df-fn 6522  df-f 6523  df-f1 6524  df-fo 6525  df-f1o 6526  df-fv 6527  df-riota 7351  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7851  df-1st 7977  df-2nd 7978  df-frecs 8269  df-wrecs 8300  df-recs 8349  df-rdg 8387  df-1o 8443  df-er 8682  df-en 8923  df-dom 8924  df-sdom 8925  df-fin 8926  df-pnf 11228  df-mnf 11229  df-xr 11230  df-ltxr 11231  df-le 11232  df-sub 11425  df-neg 11426  df-nn 12198  df-2 12260  df-3 12261  df-4 12262  df-5 12263  df-6 12264  df-n0 12459  df-z 12546  df-uz 12810  df-fz 13482  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-plusg 17239  df-sca 17242  df-vsca 17243  df-0g 17410  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-grp 18874  df-mgp 20056  df-ur 20097  df-ring 20150  df-lmod 20774
This theorem is referenced by:  lmod1zr  48411
  Copyright terms: Public domain W3C validator