![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid2g | Structured version Visualization version GIF version |
Description: Closed theorem form of tpid2 4522. (Contributed by Glauco Siliprandi, 23-Oct-2021.) |
Ref | Expression |
---|---|
tpid2g | ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2824 | . . 3 ⊢ 𝐴 = 𝐴 | |
2 | 1 | 3mix2i 1439 | . 2 ⊢ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷) |
3 | eltpg 4445 | . 2 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶 ∨ 𝐴 = 𝐴 ∨ 𝐴 = 𝐷))) | |
4 | 2, 3 | mpbiri 250 | 1 ⊢ (𝐴 ∈ 𝐵 → 𝐴 ∈ {𝐶, 𝐴, 𝐷}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ w3o 1112 = wceq 1658 ∈ wcel 2166 {ctp 4400 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-ext 2802 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3or 1114 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-v 3415 df-un 3802 df-sn 4397 df-pr 4399 df-tp 4401 |
This theorem is referenced by: limsupequzlem 40748 |
Copyright terms: Public domain | W3C validator |