MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid2g Structured version   Visualization version   GIF version

Theorem tpid2g 4737
Description: Closed theorem form of tpid2 4736. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid2g (𝐴𝐵𝐴 ∈ {𝐶, 𝐴, 𝐷})

Proof of Theorem tpid2g
StepHypRef Expression
1 eqid 2730 . . 3 𝐴 = 𝐴
213mix2i 1335 . 2 (𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷)
3 eltpg 4652 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷)))
42, 3mpbiri 258 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐴, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1085   = wceq 1540  wcel 2109  {ctp 4595
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-v 3452  df-un 3921  df-sn 4592  df-pr 4594  df-tp 4596
This theorem is referenced by:  tpf  14470  cplgr3v  29368  cshw1s2  32888  cyc3co2  33103  limsupequzlem  45713
  Copyright terms: Public domain W3C validator