MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid2g Structured version   Visualization version   GIF version

Theorem tpid2g 4712
Description: Closed theorem form of tpid2 4711. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Assertion
Ref Expression
tpid2g (𝐴𝐵𝐴 ∈ {𝐶, 𝐴, 𝐷})

Proof of Theorem tpid2g
StepHypRef Expression
1 eqid 2739 . . 3 𝐴 = 𝐴
213mix2i 1332 . 2 (𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷)
3 eltpg 4626 . 2 (𝐴𝐵 → (𝐴 ∈ {𝐶, 𝐴, 𝐷} ↔ (𝐴 = 𝐶𝐴 = 𝐴𝐴 = 𝐷)))
42, 3mpbiri 257 1 (𝐴𝐵𝐴 ∈ {𝐶, 𝐴, 𝐷})
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3o 1084   = wceq 1541  wcel 2109  {ctp 4570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-un 3896  df-sn 4567  df-pr 4569  df-tp 4571
This theorem is referenced by:  cplgr3v  27783  cshw1s2  31211  cyc3co2  31386  limsupequzlem  43217
  Copyright terms: Public domain W3C validator