Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshw1s2 Structured version   Visualization version   GIF version

Theorem cshw1s2 32936
Description: Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshw1s2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)

Proof of Theorem cshw1s2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s2len 14908 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
21oveq2i 7416 . . . . . . 7 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = (1 mod 2)
3 1re 11235 . . . . . . . 8 1 ∈ ℝ
4 2rp 13013 . . . . . . . 8 2 ∈ ℝ+
5 0le1 11760 . . . . . . . 8 0 ≤ 1
6 1lt2 12411 . . . . . . . 8 1 < 2
7 modid 13913 . . . . . . . 8 (((1 ∈ ℝ ∧ 2 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 2)) → (1 mod 2) = 1)
83, 4, 5, 6, 7mp4an 693 . . . . . . 7 (1 mod 2) = 1
92, 8eqtri 2758 . . . . . 6 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = 1
109, 1opeq12i 4854 . . . . 5 ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩ = ⟨1, 2⟩
1110oveq2i 7416 . . . 4 (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩)
12 s2cl 14897 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
13 tpid2g 4747 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ {0, 1, 2})
143, 13ax-mp 5 . . . . . . . 8 1 ∈ {0, 1, 2}
15 fz0tp 13645 . . . . . . . 8 (0...2) = {0, 1, 2}
1614, 15eleqtrri 2833 . . . . . . 7 1 ∈ (0...2)
17 tpid3g 4748 . . . . . . . . . 10 (2 ∈ ℝ+ → 2 ∈ {0, 1, 2})
184, 17ax-mp 5 . . . . . . . . 9 2 ∈ {0, 1, 2}
1918, 15eleqtrri 2833 . . . . . . . 8 2 ∈ (0...2)
201oveq2i 7416 . . . . . . . 8 (0...(♯‘⟨“𝐴𝐵”⟩)) = (0...2)
2119, 20eleqtrri 2833 . . . . . . 7 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))
22 swrdval2 14664 . . . . . . 7 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0...2) ∧ 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2316, 21, 22mp3an23 1455 . . . . . 6 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2412, 23syl 17 . . . . 5 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
25 2m1e1 12366 . . . . . . . . 9 (2 − 1) = 1
2625oveq2i 7416 . . . . . . . 8 (0..^(2 − 1)) = (0..^1)
27 fzo01 13763 . . . . . . . 8 (0..^1) = {0}
2826, 27eqtri 2758 . . . . . . 7 (0..^(2 − 1)) = {0}
2928a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (0..^(2 − 1)) = {0})
30 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ (0..^(2 − 1)))
3130, 28eleqtrdi 2844 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ {0})
32 elsni 4618 . . . . . . . . . . 11 (𝑖 ∈ {0} → 𝑖 = 0)
3331, 32syl 17 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 = 0)
3433oveq1d 7420 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = (0 + 1))
35 0p1e1 12362 . . . . . . . . 9 (0 + 1) = 1
3634, 35eqtrdi 2786 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = 1)
3736fveq2d 6880 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = (⟨“𝐴𝐵”⟩‘1))
38 s2fv1 14907 . . . . . . . 8 (𝐵𝑉 → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
3938ad2antlr 727 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
4037, 39eqtrd 2770 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = 𝐵)
4129, 40mpteq12dva 5206 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))) = (𝑖 ∈ {0} ↦ 𝐵))
42 fconstmpt 5716 . . . . . 6 ({0} × {𝐵}) = (𝑖 ∈ {0} ↦ 𝐵)
43 0nn0 12516 . . . . . . . 8 0 ∈ ℕ0
44 simpr 484 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
45 xpsng 7129 . . . . . . . 8 ((0 ∈ ℕ0𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
4643, 44, 45sylancr 587 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
47 s1val 14616 . . . . . . . 8 (𝐵𝑉 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4847adantl 481 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4946, 48eqtr4d 2773 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = ⟨“𝐵”⟩)
5042, 49eqtr3id 2784 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ {0} ↦ 𝐵) = ⟨“𝐵”⟩)
5124, 41, 503eqtrd 2774 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = ⟨“𝐵”⟩)
5211, 51eqtrid 2782 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = ⟨“𝐵”⟩)
539oveq2i 7416 . . . 4 (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = (⟨“𝐴𝐵”⟩ prefix 1)
54 pfx1s2 32914 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix 1) = ⟨“𝐴”⟩)
5553, 54eqtrid 2782 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = ⟨“𝐴”⟩)
5652, 55oveq12d 7423 . 2 ((𝐴𝑉𝐵𝑉) → ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))) = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
57 1z 12622 . . 3 1 ∈ ℤ
58 cshword 14809 . . 3 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
5912, 57, 58sylancl 586 . 2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
60 df-s2 14867 . . 3 ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩)
6160a1i 11 . 2 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
6256, 59, 613eqtr4d 2780 1 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601  {ctp 4605  cop 4607   class class class wbr 5119  cmpt 5201   × cxp 5652  cfv 6531  (class class class)co 7405  cr 11128  0cc0 11129  1c1 11130   + caddc 11132   < clt 11269  cle 11270  cmin 11466  2c2 12295  0cn0 12501  cz 12588  +crp 13008  ...cfz 13524  ..^cfzo 13671   mod cmo 13886  chash 14348  Word cword 14531   ++ cconcat 14588  ⟨“cs1 14613   substr csubstr 14658   prefix cpfx 14688   cyclShift ccsh 14806  ⟨“cs2 14860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-rp 13009  df-fz 13525  df-fzo 13672  df-fl 13809  df-mod 13887  df-hash 14349  df-word 14532  df-concat 14589  df-s1 14614  df-substr 14659  df-pfx 14689  df-csh 14807  df-s2 14867
This theorem is referenced by:  cycpm2tr  33130
  Copyright terms: Public domain W3C validator