Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshw1s2 Structured version   Visualization version   GIF version

Theorem cshw1s2 32694
Description: Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshw1s2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)

Proof of Theorem cshw1s2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s2len 14873 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
21oveq2i 7431 . . . . . . 7 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = (1 mod 2)
3 1re 11245 . . . . . . . 8 1 ∈ ℝ
4 2rp 13012 . . . . . . . 8 2 ∈ ℝ+
5 0le1 11768 . . . . . . . 8 0 ≤ 1
6 1lt2 12414 . . . . . . . 8 1 < 2
7 modid 13894 . . . . . . . 8 (((1 ∈ ℝ ∧ 2 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 2)) → (1 mod 2) = 1)
83, 4, 5, 6, 7mp4an 692 . . . . . . 7 (1 mod 2) = 1
92, 8eqtri 2756 . . . . . 6 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = 1
109, 1opeq12i 4879 . . . . 5 ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩ = ⟨1, 2⟩
1110oveq2i 7431 . . . 4 (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩)
12 s2cl 14862 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
13 tpid2g 4776 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ {0, 1, 2})
143, 13ax-mp 5 . . . . . . . 8 1 ∈ {0, 1, 2}
15 fz0tp 13635 . . . . . . . 8 (0...2) = {0, 1, 2}
1614, 15eleqtrri 2828 . . . . . . 7 1 ∈ (0...2)
17 tpid3g 4777 . . . . . . . . . 10 (2 ∈ ℝ+ → 2 ∈ {0, 1, 2})
184, 17ax-mp 5 . . . . . . . . 9 2 ∈ {0, 1, 2}
1918, 15eleqtrri 2828 . . . . . . . 8 2 ∈ (0...2)
201oveq2i 7431 . . . . . . . 8 (0...(♯‘⟨“𝐴𝐵”⟩)) = (0...2)
2119, 20eleqtrri 2828 . . . . . . 7 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))
22 swrdval2 14629 . . . . . . 7 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0...2) ∧ 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2316, 21, 22mp3an23 1450 . . . . . 6 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2412, 23syl 17 . . . . 5 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
25 2m1e1 12369 . . . . . . . . 9 (2 − 1) = 1
2625oveq2i 7431 . . . . . . . 8 (0..^(2 − 1)) = (0..^1)
27 fzo01 13747 . . . . . . . 8 (0..^1) = {0}
2826, 27eqtri 2756 . . . . . . 7 (0..^(2 − 1)) = {0}
2928a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (0..^(2 − 1)) = {0})
30 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ (0..^(2 − 1)))
3130, 28eleqtrdi 2839 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ {0})
32 elsni 4646 . . . . . . . . . . 11 (𝑖 ∈ {0} → 𝑖 = 0)
3331, 32syl 17 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 = 0)
3433oveq1d 7435 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = (0 + 1))
35 0p1e1 12365 . . . . . . . . 9 (0 + 1) = 1
3634, 35eqtrdi 2784 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = 1)
3736fveq2d 6901 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = (⟨“𝐴𝐵”⟩‘1))
38 s2fv1 14872 . . . . . . . 8 (𝐵𝑉 → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
3938ad2antlr 726 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
4037, 39eqtrd 2768 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = 𝐵)
4129, 40mpteq12dva 5237 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))) = (𝑖 ∈ {0} ↦ 𝐵))
42 fconstmpt 5740 . . . . . 6 ({0} × {𝐵}) = (𝑖 ∈ {0} ↦ 𝐵)
43 0nn0 12518 . . . . . . . 8 0 ∈ ℕ0
44 simpr 484 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
45 xpsng 7148 . . . . . . . 8 ((0 ∈ ℕ0𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
4643, 44, 45sylancr 586 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
47 s1val 14581 . . . . . . . 8 (𝐵𝑉 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4847adantl 481 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4946, 48eqtr4d 2771 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = ⟨“𝐵”⟩)
5042, 49eqtr3id 2782 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ {0} ↦ 𝐵) = ⟨“𝐵”⟩)
5124, 41, 503eqtrd 2772 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = ⟨“𝐵”⟩)
5211, 51eqtrid 2780 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = ⟨“𝐵”⟩)
539oveq2i 7431 . . . 4 (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = (⟨“𝐴𝐵”⟩ prefix 1)
54 pfx1s2 32675 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix 1) = ⟨“𝐴”⟩)
5553, 54eqtrid 2780 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = ⟨“𝐴”⟩)
5652, 55oveq12d 7438 . 2 ((𝐴𝑉𝐵𝑉) → ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))) = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
57 1z 12623 . . 3 1 ∈ ℤ
58 cshword 14774 . . 3 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
5912, 57, 58sylancl 585 . 2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
60 df-s2 14832 . . 3 ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩)
6160a1i 11 . 2 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
6256, 59, 613eqtr4d 2778 1 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {csn 4629  {ctp 4633  cop 4635   class class class wbr 5148  cmpt 5231   × cxp 5676  cfv 6548  (class class class)co 7420  cr 11138  0cc0 11139  1c1 11140   + caddc 11142   < clt 11279  cle 11280  cmin 11475  2c2 12298  0cn0 12503  cz 12589  +crp 13007  ...cfz 13517  ..^cfzo 13660   mod cmo 13867  chash 14322  Word cword 14497   ++ cconcat 14553  ⟨“cs1 14578   substr csubstr 14623   prefix cpfx 14653   cyclShift ccsh 14771  ⟨“cs2 14825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11195  ax-resscn 11196  ax-1cn 11197  ax-icn 11198  ax-addcl 11199  ax-addrcl 11200  ax-mulcl 11201  ax-mulrcl 11202  ax-mulcom 11203  ax-addass 11204  ax-mulass 11205  ax-distr 11206  ax-i2m1 11207  ax-1ne0 11208  ax-1rid 11209  ax-rnegex 11210  ax-rrecex 11211  ax-cnre 11212  ax-pre-lttri 11213  ax-pre-lttrn 11214  ax-pre-ltadd 11215  ax-pre-mulgt0 11216  ax-pre-sup 11217
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9466  df-inf 9467  df-card 9963  df-pnf 11281  df-mnf 11282  df-xr 11283  df-ltxr 11284  df-le 11285  df-sub 11477  df-neg 11478  df-div 11903  df-nn 12244  df-2 12306  df-n0 12504  df-xnn0 12576  df-z 12590  df-uz 12854  df-rp 13008  df-fz 13518  df-fzo 13661  df-fl 13790  df-mod 13868  df-hash 14323  df-word 14498  df-concat 14554  df-s1 14579  df-substr 14624  df-pfx 14654  df-csh 14772  df-s2 14832
This theorem is referenced by:  cycpm2tr  32853
  Copyright terms: Public domain W3C validator