Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshw1s2 Structured version   Visualization version   GIF version

Theorem cshw1s2 31134
Description: Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshw1s2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)

Proof of Theorem cshw1s2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s2len 14530 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
21oveq2i 7266 . . . . . . 7 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = (1 mod 2)
3 1re 10906 . . . . . . . 8 1 ∈ ℝ
4 2rp 12664 . . . . . . . 8 2 ∈ ℝ+
5 0le1 11428 . . . . . . . 8 0 ≤ 1
6 1lt2 12074 . . . . . . . 8 1 < 2
7 modid 13544 . . . . . . . 8 (((1 ∈ ℝ ∧ 2 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 2)) → (1 mod 2) = 1)
83, 4, 5, 6, 7mp4an 689 . . . . . . 7 (1 mod 2) = 1
92, 8eqtri 2766 . . . . . 6 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = 1
109, 1opeq12i 4806 . . . . 5 ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩ = ⟨1, 2⟩
1110oveq2i 7266 . . . 4 (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩)
12 s2cl 14519 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
13 tpid2g 4704 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ {0, 1, 2})
143, 13ax-mp 5 . . . . . . . 8 1 ∈ {0, 1, 2}
15 fz0tp 13286 . . . . . . . 8 (0...2) = {0, 1, 2}
1614, 15eleqtrri 2838 . . . . . . 7 1 ∈ (0...2)
17 tpid3g 4705 . . . . . . . . . 10 (2 ∈ ℝ+ → 2 ∈ {0, 1, 2})
184, 17ax-mp 5 . . . . . . . . 9 2 ∈ {0, 1, 2}
1918, 15eleqtrri 2838 . . . . . . . 8 2 ∈ (0...2)
201oveq2i 7266 . . . . . . . 8 (0...(♯‘⟨“𝐴𝐵”⟩)) = (0...2)
2119, 20eleqtrri 2838 . . . . . . 7 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))
22 swrdval2 14287 . . . . . . 7 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0...2) ∧ 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2316, 21, 22mp3an23 1451 . . . . . 6 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2412, 23syl 17 . . . . 5 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
25 2m1e1 12029 . . . . . . . . 9 (2 − 1) = 1
2625oveq2i 7266 . . . . . . . 8 (0..^(2 − 1)) = (0..^1)
27 fzo01 13397 . . . . . . . 8 (0..^1) = {0}
2826, 27eqtri 2766 . . . . . . 7 (0..^(2 − 1)) = {0}
2928a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (0..^(2 − 1)) = {0})
30 simpr 484 . . . . . . . . . . . 12 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ (0..^(2 − 1)))
3130, 28eleqtrdi 2849 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ {0})
32 elsni 4575 . . . . . . . . . . 11 (𝑖 ∈ {0} → 𝑖 = 0)
3331, 32syl 17 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 = 0)
3433oveq1d 7270 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = (0 + 1))
35 0p1e1 12025 . . . . . . . . 9 (0 + 1) = 1
3634, 35eqtrdi 2795 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = 1)
3736fveq2d 6760 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = (⟨“𝐴𝐵”⟩‘1))
38 s2fv1 14529 . . . . . . . 8 (𝐵𝑉 → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
3938ad2antlr 723 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
4037, 39eqtrd 2778 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = 𝐵)
4129, 40mpteq12dva 5159 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))) = (𝑖 ∈ {0} ↦ 𝐵))
42 fconstmpt 5640 . . . . . 6 ({0} × {𝐵}) = (𝑖 ∈ {0} ↦ 𝐵)
43 0nn0 12178 . . . . . . . 8 0 ∈ ℕ0
44 simpr 484 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
45 xpsng 6993 . . . . . . . 8 ((0 ∈ ℕ0𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
4643, 44, 45sylancr 586 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
47 s1val 14231 . . . . . . . 8 (𝐵𝑉 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4847adantl 481 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4946, 48eqtr4d 2781 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = ⟨“𝐵”⟩)
5042, 49eqtr3id 2793 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ {0} ↦ 𝐵) = ⟨“𝐵”⟩)
5124, 41, 503eqtrd 2782 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = ⟨“𝐵”⟩)
5211, 51syl5eq 2791 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = ⟨“𝐵”⟩)
539oveq2i 7266 . . . 4 (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = (⟨“𝐴𝐵”⟩ prefix 1)
54 pfx1s2 31115 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix 1) = ⟨“𝐴”⟩)
5553, 54syl5eq 2791 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = ⟨“𝐴”⟩)
5652, 55oveq12d 7273 . 2 ((𝐴𝑉𝐵𝑉) → ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))) = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
57 1z 12280 . . 3 1 ∈ ℤ
58 cshword 14432 . . 3 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
5912, 57, 58sylancl 585 . 2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
60 df-s2 14489 . . 3 ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩)
6160a1i 11 . 2 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
6256, 59, 613eqtr4d 2788 1 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {csn 4558  {ctp 4562  cop 4564   class class class wbr 5070  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  cr 10801  0cc0 10802  1c1 10803   + caddc 10805   < clt 10940  cle 10941  cmin 11135  2c2 11958  0cn0 12163  cz 12249  +crp 12659  ...cfz 13168  ..^cfzo 13311   mod cmo 13517  chash 13972  Word cword 14145   ++ cconcat 14201  ⟨“cs1 14228   substr csubstr 14281   prefix cpfx 14311   cyclShift ccsh 14429  ⟨“cs2 14482
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-n0 12164  df-xnn0 12236  df-z 12250  df-uz 12512  df-rp 12660  df-fz 13169  df-fzo 13312  df-fl 13440  df-mod 13518  df-hash 13973  df-word 14146  df-concat 14202  df-s1 14229  df-substr 14282  df-pfx 14312  df-csh 14430  df-s2 14489
This theorem is referenced by:  cycpm2tr  31288
  Copyright terms: Public domain W3C validator