Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshw1s2 Structured version   Visualization version   GIF version

Theorem cshw1s2 32119
Description: Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshw1s2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)

Proof of Theorem cshw1s2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s2len 14839 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
21oveq2i 7419 . . . . . . 7 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = (1 mod 2)
3 1re 11213 . . . . . . . 8 1 ∈ ℝ
4 2rp 12978 . . . . . . . 8 2 ∈ ℝ+
5 0le1 11736 . . . . . . . 8 0 ≤ 1
6 1lt2 12382 . . . . . . . 8 1 < 2
7 modid 13860 . . . . . . . 8 (((1 ∈ ℝ ∧ 2 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 2)) → (1 mod 2) = 1)
83, 4, 5, 6, 7mp4an 691 . . . . . . 7 (1 mod 2) = 1
92, 8eqtri 2760 . . . . . 6 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = 1
109, 1opeq12i 4878 . . . . 5 ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩ = ⟨1, 2⟩
1110oveq2i 7419 . . . 4 (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩)
12 s2cl 14828 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
13 tpid2g 4775 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ {0, 1, 2})
143, 13ax-mp 5 . . . . . . . 8 1 ∈ {0, 1, 2}
15 fz0tp 13601 . . . . . . . 8 (0...2) = {0, 1, 2}
1614, 15eleqtrri 2832 . . . . . . 7 1 ∈ (0...2)
17 tpid3g 4776 . . . . . . . . . 10 (2 ∈ ℝ+ → 2 ∈ {0, 1, 2})
184, 17ax-mp 5 . . . . . . . . 9 2 ∈ {0, 1, 2}
1918, 15eleqtrri 2832 . . . . . . . 8 2 ∈ (0...2)
201oveq2i 7419 . . . . . . . 8 (0...(♯‘⟨“𝐴𝐵”⟩)) = (0...2)
2119, 20eleqtrri 2832 . . . . . . 7 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))
22 swrdval2 14595 . . . . . . 7 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0...2) ∧ 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2316, 21, 22mp3an23 1453 . . . . . 6 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2412, 23syl 17 . . . . 5 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
25 2m1e1 12337 . . . . . . . . 9 (2 − 1) = 1
2625oveq2i 7419 . . . . . . . 8 (0..^(2 − 1)) = (0..^1)
27 fzo01 13713 . . . . . . . 8 (0..^1) = {0}
2826, 27eqtri 2760 . . . . . . 7 (0..^(2 − 1)) = {0}
2928a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (0..^(2 − 1)) = {0})
30 simpr 485 . . . . . . . . . . . 12 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ (0..^(2 − 1)))
3130, 28eleqtrdi 2843 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ {0})
32 elsni 4645 . . . . . . . . . . 11 (𝑖 ∈ {0} → 𝑖 = 0)
3331, 32syl 17 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 = 0)
3433oveq1d 7423 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = (0 + 1))
35 0p1e1 12333 . . . . . . . . 9 (0 + 1) = 1
3634, 35eqtrdi 2788 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = 1)
3736fveq2d 6895 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = (⟨“𝐴𝐵”⟩‘1))
38 s2fv1 14838 . . . . . . . 8 (𝐵𝑉 → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
3938ad2antlr 725 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
4037, 39eqtrd 2772 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = 𝐵)
4129, 40mpteq12dva 5237 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))) = (𝑖 ∈ {0} ↦ 𝐵))
42 fconstmpt 5738 . . . . . 6 ({0} × {𝐵}) = (𝑖 ∈ {0} ↦ 𝐵)
43 0nn0 12486 . . . . . . . 8 0 ∈ ℕ0
44 simpr 485 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
45 xpsng 7136 . . . . . . . 8 ((0 ∈ ℕ0𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
4643, 44, 45sylancr 587 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
47 s1val 14547 . . . . . . . 8 (𝐵𝑉 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4847adantl 482 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4946, 48eqtr4d 2775 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = ⟨“𝐵”⟩)
5042, 49eqtr3id 2786 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ {0} ↦ 𝐵) = ⟨“𝐵”⟩)
5124, 41, 503eqtrd 2776 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = ⟨“𝐵”⟩)
5211, 51eqtrid 2784 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = ⟨“𝐵”⟩)
539oveq2i 7419 . . . 4 (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = (⟨“𝐴𝐵”⟩ prefix 1)
54 pfx1s2 32100 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix 1) = ⟨“𝐴”⟩)
5553, 54eqtrid 2784 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = ⟨“𝐴”⟩)
5652, 55oveq12d 7426 . 2 ((𝐴𝑉𝐵𝑉) → ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))) = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
57 1z 12591 . . 3 1 ∈ ℤ
58 cshword 14740 . . 3 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
5912, 57, 58sylancl 586 . 2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
60 df-s2 14798 . . 3 ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩)
6160a1i 11 . 2 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
6256, 59, 613eqtr4d 2782 1 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  {csn 4628  {ctp 4632  cop 4634   class class class wbr 5148  cmpt 5231   × cxp 5674  cfv 6543  (class class class)co 7408  cr 11108  0cc0 11109  1c1 11110   + caddc 11112   < clt 11247  cle 11248  cmin 11443  2c2 12266  0cn0 12471  cz 12557  +crp 12973  ...cfz 13483  ..^cfzo 13626   mod cmo 13833  chash 14289  Word cword 14463   ++ cconcat 14519  ⟨“cs1 14544   substr csubstr 14589   prefix cpfx 14619   cyclShift ccsh 14737  ⟨“cs2 14791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-sup 9436  df-inf 9437  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-n0 12472  df-xnn0 12544  df-z 12558  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-fl 13756  df-mod 13834  df-hash 14290  df-word 14464  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-csh 14738  df-s2 14798
This theorem is referenced by:  cycpm2tr  32273
  Copyright terms: Public domain W3C validator