Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cshw1s2 Structured version   Visualization version   GIF version

Theorem cshw1s2 30906
Description: Cyclically shifting a length 2 word swaps its symbols. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Assertion
Ref Expression
cshw1s2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)

Proof of Theorem cshw1s2
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 s2len 14419 . . . . . . . 8 (♯‘⟨“𝐴𝐵”⟩) = 2
21oveq2i 7202 . . . . . . 7 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = (1 mod 2)
3 1re 10798 . . . . . . . 8 1 ∈ ℝ
4 2rp 12556 . . . . . . . 8 2 ∈ ℝ+
5 0le1 11320 . . . . . . . 8 0 ≤ 1
6 1lt2 11966 . . . . . . . 8 1 < 2
7 modid 13434 . . . . . . . 8 (((1 ∈ ℝ ∧ 2 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 2)) → (1 mod 2) = 1)
83, 4, 5, 6, 7mp4an 693 . . . . . . 7 (1 mod 2) = 1
92, 8eqtri 2759 . . . . . 6 (1 mod (♯‘⟨“𝐴𝐵”⟩)) = 1
109, 1opeq12i 4775 . . . . 5 ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩ = ⟨1, 2⟩
1110oveq2i 7202 . . . 4 (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩)
12 s2cl 14408 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ⟨“𝐴𝐵”⟩ ∈ Word 𝑉)
13 tpid2g 4673 . . . . . . . . 9 (1 ∈ ℝ → 1 ∈ {0, 1, 2})
143, 13ax-mp 5 . . . . . . . 8 1 ∈ {0, 1, 2}
15 fz0tp 13178 . . . . . . . 8 (0...2) = {0, 1, 2}
1614, 15eleqtrri 2830 . . . . . . 7 1 ∈ (0...2)
17 tpid3g 4674 . . . . . . . . . 10 (2 ∈ ℝ+ → 2 ∈ {0, 1, 2})
184, 17ax-mp 5 . . . . . . . . 9 2 ∈ {0, 1, 2}
1918, 15eleqtrri 2830 . . . . . . . 8 2 ∈ (0...2)
201oveq2i 7202 . . . . . . . 8 (0...(♯‘⟨“𝐴𝐵”⟩)) = (0...2)
2119, 20eleqtrri 2830 . . . . . . 7 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))
22 swrdval2 14176 . . . . . . 7 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ (0...2) ∧ 2 ∈ (0...(♯‘⟨“𝐴𝐵”⟩))) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2316, 21, 22mp3an23 1455 . . . . . 6 (⟨“𝐴𝐵”⟩ ∈ Word 𝑉 → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
2412, 23syl 17 . . . . 5 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))))
25 2m1e1 11921 . . . . . . . . 9 (2 − 1) = 1
2625oveq2i 7202 . . . . . . . 8 (0..^(2 − 1)) = (0..^1)
27 fzo01 13289 . . . . . . . 8 (0..^1) = {0}
2826, 27eqtri 2759 . . . . . . 7 (0..^(2 − 1)) = {0}
2928a1i 11 . . . . . 6 ((𝐴𝑉𝐵𝑉) → (0..^(2 − 1)) = {0})
30 simpr 488 . . . . . . . . . . . 12 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ (0..^(2 − 1)))
3130, 28eleqtrdi 2841 . . . . . . . . . . 11 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 ∈ {0})
32 elsni 4544 . . . . . . . . . . 11 (𝑖 ∈ {0} → 𝑖 = 0)
3331, 32syl 17 . . . . . . . . . 10 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → 𝑖 = 0)
3433oveq1d 7206 . . . . . . . . 9 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = (0 + 1))
35 0p1e1 11917 . . . . . . . . 9 (0 + 1) = 1
3634, 35eqtrdi 2787 . . . . . . . 8 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (𝑖 + 1) = 1)
3736fveq2d 6699 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = (⟨“𝐴𝐵”⟩‘1))
38 s2fv1 14418 . . . . . . . 8 (𝐵𝑉 → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
3938ad2antlr 727 . . . . . . 7 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘1) = 𝐵)
4037, 39eqtrd 2771 . . . . . 6 (((𝐴𝑉𝐵𝑉) ∧ 𝑖 ∈ (0..^(2 − 1))) → (⟨“𝐴𝐵”⟩‘(𝑖 + 1)) = 𝐵)
4129, 40mpteq12dva 5124 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ (0..^(2 − 1)) ↦ (⟨“𝐴𝐵”⟩‘(𝑖 + 1))) = (𝑖 ∈ {0} ↦ 𝐵))
42 fconstmpt 5596 . . . . . 6 ({0} × {𝐵}) = (𝑖 ∈ {0} ↦ 𝐵)
43 0nn0 12070 . . . . . . . 8 0 ∈ ℕ0
44 simpr 488 . . . . . . . 8 ((𝐴𝑉𝐵𝑉) → 𝐵𝑉)
45 xpsng 6932 . . . . . . . 8 ((0 ∈ ℕ0𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
4643, 44, 45sylancr 590 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = {⟨0, 𝐵⟩})
47 s1val 14120 . . . . . . . 8 (𝐵𝑉 → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4847adantl 485 . . . . . . 7 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵”⟩ = {⟨0, 𝐵⟩})
4946, 48eqtr4d 2774 . . . . . 6 ((𝐴𝑉𝐵𝑉) → ({0} × {𝐵}) = ⟨“𝐵”⟩)
5042, 49eqtr3id 2785 . . . . 5 ((𝐴𝑉𝐵𝑉) → (𝑖 ∈ {0} ↦ 𝐵) = ⟨“𝐵”⟩)
5124, 41, 503eqtrd 2775 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨1, 2⟩) = ⟨“𝐵”⟩)
5211, 51syl5eq 2783 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) = ⟨“𝐵”⟩)
539oveq2i 7202 . . . 4 (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = (⟨“𝐴𝐵”⟩ prefix 1)
54 pfx1s2 30887 . . . 4 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix 1) = ⟨“𝐴”⟩)
5553, 54syl5eq 2783 . . 3 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩))) = ⟨“𝐴”⟩)
5652, 55oveq12d 7209 . 2 ((𝐴𝑉𝐵𝑉) → ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))) = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
57 1z 12172 . . 3 1 ∈ ℤ
58 cshword 14321 . . 3 ((⟨“𝐴𝐵”⟩ ∈ Word 𝑉 ∧ 1 ∈ ℤ) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
5912, 57, 58sylancl 589 . 2 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ((⟨“𝐴𝐵”⟩ substr ⟨(1 mod (♯‘⟨“𝐴𝐵”⟩)), (♯‘⟨“𝐴𝐵”⟩)⟩) ++ (⟨“𝐴𝐵”⟩ prefix (1 mod (♯‘⟨“𝐴𝐵”⟩)))))
60 df-s2 14378 . . 3 ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩)
6160a1i 11 . 2 ((𝐴𝑉𝐵𝑉) → ⟨“𝐵𝐴”⟩ = (⟨“𝐵”⟩ ++ ⟨“𝐴”⟩))
6256, 59, 613eqtr4d 2781 1 ((𝐴𝑉𝐵𝑉) → (⟨“𝐴𝐵”⟩ cyclShift 1) = ⟨“𝐵𝐴”⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  {csn 4527  {ctp 4531  cop 4533   class class class wbr 5039  cmpt 5120   × cxp 5534  cfv 6358  (class class class)co 7191  cr 10693  0cc0 10694  1c1 10695   + caddc 10697   < clt 10832  cle 10833  cmin 11027  2c2 11850  0cn0 12055  cz 12141  +crp 12551  ...cfz 13060  ..^cfzo 13203   mod cmo 13407  chash 13861  Word cword 14034   ++ cconcat 14090  ⟨“cs1 14117   substr csubstr 14170   prefix cpfx 14200   cyclShift ccsh 14318  ⟨“cs2 14371
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-n0 12056  df-xnn0 12128  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-hash 13862  df-word 14035  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-csh 14319  df-s2 14378
This theorem is referenced by:  cycpm2tr  31059
  Copyright terms: Public domain W3C validator