Step | Hyp | Ref
| Expression |
1 | | cycpm3.c |
. . . . 5
⊢ 𝐶 = (toCyc‘𝐷) |
2 | | cycpm3.s |
. . . . 5
⊢ 𝑆 = (SymGrp‘𝐷) |
3 | | cycpm3.d |
. . . . 5
⊢ (𝜑 → 𝐷 ∈ 𝑉) |
4 | | cycpm3.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝐷) |
5 | | cycpm3.j |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ 𝐷) |
6 | | cycpm3.k |
. . . . 5
⊢ (𝜑 → 𝐾 ∈ 𝐷) |
7 | | cycpm3.1 |
. . . . 5
⊢ (𝜑 → 𝐼 ≠ 𝐽) |
8 | | cycpm3.2 |
. . . . 5
⊢ (𝜑 → 𝐽 ≠ 𝐾) |
9 | | cycpm3.3 |
. . . . 5
⊢ (𝜑 → 𝐾 ≠ 𝐼) |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cycpm3cl 31402 |
. . . 4
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) ∈ (Base‘𝑆)) |
11 | | eqid 2738 |
. . . . 5
⊢
(Base‘𝑆) =
(Base‘𝑆) |
12 | 2, 11 | symgbasf 18983 |
. . . 4
⊢ ((𝐶‘〈“𝐼𝐽𝐾”〉) ∈ (Base‘𝑆) → (𝐶‘〈“𝐼𝐽𝐾”〉):𝐷⟶𝐷) |
13 | 10, 12 | syl 17 |
. . 3
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉):𝐷⟶𝐷) |
14 | 13 | ffnd 6601 |
. 2
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) Fn 𝐷) |
15 | 2 | symggrp 19008 |
. . . . . 6
⊢ (𝐷 ∈ 𝑉 → 𝑆 ∈ Grp) |
16 | 3, 15 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑆 ∈ Grp) |
17 | 9 | necomd 2999 |
. . . . . 6
⊢ (𝜑 → 𝐼 ≠ 𝐾) |
18 | 1, 3, 4, 6, 17, 2 | cycpm2cl 31387 |
. . . . 5
⊢ (𝜑 → (𝐶‘〈“𝐼𝐾”〉) ∈ (Base‘𝑆)) |
19 | 1, 3, 4, 5, 7, 2 | cycpm2cl 31387 |
. . . . 5
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) |
20 | | cyc3co2.t |
. . . . . 6
⊢ · =
(+g‘𝑆) |
21 | 11, 20 | grpcl 18585 |
. . . . 5
⊢ ((𝑆 ∈ Grp ∧ (𝐶‘〈“𝐼𝐾”〉) ∈ (Base‘𝑆) ∧ (𝐶‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) ∈ (Base‘𝑆)) |
22 | 16, 18, 19, 21 | syl3anc 1370 |
. . . 4
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) ∈ (Base‘𝑆)) |
23 | 2, 11 | symgbasf 18983 |
. . . 4
⊢ (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) ∈ (Base‘𝑆) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)):𝐷⟶𝐷) |
24 | 22, 23 | syl 17 |
. . 3
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)):𝐷⟶𝐷) |
25 | 24 | ffnd 6601 |
. 2
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) Fn 𝐷) |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cyc3fv1 31404 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼) = 𝐽) |
27 | 26 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼) = 𝐽) |
28 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 = 𝐼) |
29 | 28 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐼)) |
30 | 2, 11, 20 | symgov 18991 |
. . . . . . . . . . 11
⊢ (((𝐶‘〈“𝐼𝐾”〉) ∈ (Base‘𝑆) ∧ (𝐶‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆)) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) = ((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))) |
31 | 18, 19, 30 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) = ((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))) |
32 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) = ((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))) |
33 | 32 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
34 | 2, 11 | symgbasf 18983 |
. . . . . . . . . . . 12
⊢ ((𝐶‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆) → (𝐶‘〈“𝐼𝐽”〉):𝐷⟶𝐷) |
35 | 19, 34 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽”〉):𝐷⟶𝐷) |
36 | 35 | ffund 6604 |
. . . . . . . . . 10
⊢ (𝜑 → Fun (𝐶‘〈“𝐼𝐽”〉)) |
37 | 4 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝐼 ∈ 𝐷) |
38 | 34 | fdmd 6611 |
. . . . . . . . . . . . 13
⊢ ((𝐶‘〈“𝐼𝐽”〉) ∈ (Base‘𝑆) → dom (𝐶‘〈“𝐼𝐽”〉) = 𝐷) |
39 | 19, 38 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → dom (𝐶‘〈“𝐼𝐽”〉) = 𝐷) |
40 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → dom (𝐶‘〈“𝐼𝐽”〉) = 𝐷) |
41 | 37, 28, 40 | 3eltr4d 2854 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → 𝑥 ∈ dom (𝐶‘〈“𝐼𝐽”〉)) |
42 | | fvco 6866 |
. . . . . . . . . 10
⊢ ((Fun
(𝐶‘〈“𝐼𝐽”〉) ∧ 𝑥 ∈ dom (𝐶‘〈“𝐼𝐽”〉)) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥))) |
43 | 36, 41, 42 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥))) |
44 | 28 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐼)) |
45 | 1, 3, 4, 5, 7, 2 | cyc2fv1 31388 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
46 | 45 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽”〉)‘𝐼) = 𝐽) |
47 | 44, 46 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = 𝐽) |
48 | 47 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥)) = ((𝐶‘〈“𝐼𝐾”〉)‘𝐽)) |
49 | 8 | necomd 2999 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ≠ 𝐽) |
50 | 7 | necomd 2999 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐽 ≠ 𝐼) |
51 | 1, 2, 3, 4, 6, 5, 17, 49, 50 | cyc2fvx 31401 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉)‘𝐽) = 𝐽) |
52 | 51 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐾”〉)‘𝐽) = 𝐽) |
53 | 43, 48, 52 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝐽) |
54 | 33, 53 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝐽) |
55 | 27, 29, 54 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
56 | 55 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) ∧ 𝑥 = 𝐼) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
57 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cyc3fv2 31405 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
58 | 57 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽) = 𝐾) |
59 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → 𝑥 = 𝐽) |
60 | 59 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐽)) |
61 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) = ((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))) |
62 | 61 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
63 | 5 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → 𝐽 ∈ 𝐷) |
64 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → dom (𝐶‘〈“𝐼𝐽”〉) = 𝐷) |
65 | 63, 59, 64 | 3eltr4d 2854 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → 𝑥 ∈ dom (𝐶‘〈“𝐼𝐽”〉)) |
66 | 36, 65, 42 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥))) |
67 | 59 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐽)) |
68 | 1, 3, 4, 5, 7, 2 | cyc2fv2 31389 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
69 | 68 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽”〉)‘𝐽) = 𝐼) |
70 | 67, 69 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = 𝐼) |
71 | 70 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥)) = ((𝐶‘〈“𝐼𝐾”〉)‘𝐼)) |
72 | 1, 3, 4, 6, 17, 2 | cyc2fv1 31388 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉)‘𝐼) = 𝐾) |
73 | 72 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐾”〉)‘𝐼) = 𝐾) |
74 | 66, 71, 73 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝐾) |
75 | 62, 74 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝐾) |
76 | 58, 60, 75 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
77 | 76 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) ∧ 𝑥 = 𝐽) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
78 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cyc3fv3 31406 |
. . . . . . . 8
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾) = 𝐼) |
79 | 78 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾) = 𝐼) |
80 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → 𝑥 = 𝐾) |
81 | 80 | fveq2d 6778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝐾)) |
82 | 31 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) = ((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))) |
83 | 82 | fveq1d 6776 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
84 | 6 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → 𝐾 ∈ 𝐷) |
85 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → dom (𝐶‘〈“𝐼𝐽”〉) = 𝐷) |
86 | 84, 80, 85 | 3eltr4d 2854 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → 𝑥 ∈ dom (𝐶‘〈“𝐼𝐽”〉)) |
87 | 36, 86, 42 | syl2an2r 682 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥))) |
88 | 80 | fveq2d 6778 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = ((𝐶‘〈“𝐼𝐽”〉)‘𝐾)) |
89 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cyc2fvx 31401 |
. . . . . . . . . . . 12
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐽”〉)‘𝐾) = 𝐾) |
90 | 89 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽”〉)‘𝐾) = 𝐾) |
91 | 88, 90 | eqtrd 2778 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = 𝐾) |
92 | 91 | fveq2d 6778 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥)) = ((𝐶‘〈“𝐼𝐾”〉)‘𝐾)) |
93 | 1, 3, 4, 6, 17, 2 | cyc2fv2 31389 |
. . . . . . . . . 10
⊢ (𝜑 → ((𝐶‘〈“𝐼𝐾”〉)‘𝐾) = 𝐼) |
94 | 93 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐾”〉)‘𝐾) = 𝐼) |
95 | 87, 92, 94 | 3eqtrd 2782 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝐼) |
96 | 83, 95 | eqtrd 2778 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝐼) |
97 | 79, 81, 96 | 3eqtr4d 2788 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
98 | 97 | adantlr 712 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) ∧ 𝑥 = 𝐾) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
99 | | eltpi 4623 |
. . . . . 6
⊢ (𝑥 ∈ {𝐼, 𝐽, 𝐾} → (𝑥 = 𝐼 ∨ 𝑥 = 𝐽 ∨ 𝑥 = 𝐾)) |
100 | 99 | adantl 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) → (𝑥 = 𝐼 ∨ 𝑥 = 𝐽 ∨ 𝑥 = 𝐾)) |
101 | 56, 77, 98, 100 | mpjao3dan 1430 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
102 | 101 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
103 | 35 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (𝐶‘〈“𝐼𝐽”〉):𝐷⟶𝐷) |
104 | 103 | ffund 6604 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → Fun (𝐶‘〈“𝐼𝐽”〉)) |
105 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) |
106 | 105 | eldifad 3899 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝑥 ∈ 𝐷) |
107 | 39 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → dom (𝐶‘〈“𝐼𝐽”〉) = 𝐷) |
108 | 106, 107 | eleqtrrd 2842 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝑥 ∈ dom (𝐶‘〈“𝐼𝐽”〉)) |
109 | 104, 108,
42 | syl2anc 584 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥))) |
110 | 3 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝐷 ∈ 𝑉) |
111 | 4, 5 | s2cld 14584 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
112 | 111 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 〈“𝐼𝐽”〉 ∈ Word 𝐷) |
113 | 4, 5, 7 | s2f1 31219 |
. . . . . . . . 9
⊢ (𝜑 → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
114 | 113 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 〈“𝐼𝐽”〉:dom 〈“𝐼𝐽”〉–1-1→𝐷) |
115 | | tpid1g 4705 |
. . . . . . . . . . . . 13
⊢ (𝐼 ∈ 𝐷 → 𝐼 ∈ {𝐼, 𝐽, 𝐾}) |
116 | 4, 115 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐼 ∈ {𝐼, 𝐽, 𝐾}) |
117 | | tpid2g 4707 |
. . . . . . . . . . . . 13
⊢ (𝐽 ∈ 𝐷 → 𝐽 ∈ {𝐼, 𝐽, 𝐾}) |
118 | 5, 117 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐽 ∈ {𝐼, 𝐽, 𝐾}) |
119 | 116, 118 | prssd 4755 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐼, 𝐽} ⊆ {𝐼, 𝐽, 𝐾}) |
120 | 4, 5 | s2rn 31218 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 〈“𝐼𝐽”〉 = {𝐼, 𝐽}) |
121 | 120 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐼, 𝐽} = ran 〈“𝐼𝐽”〉) |
122 | 4, 5, 6 | s3rn 31220 |
. . . . . . . . . . . 12
⊢ (𝜑 → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
123 | 122 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝐼, 𝐽, 𝐾} = ran 〈“𝐼𝐽𝐾”〉) |
124 | 119, 121,
123 | 3sstr3d 3967 |
. . . . . . . . . 10
⊢ (𝜑 → ran 〈“𝐼𝐽”〉 ⊆ ran 〈“𝐼𝐽𝐾”〉) |
125 | 124 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ran 〈“𝐼𝐽”〉 ⊆ ran 〈“𝐼𝐽𝐾”〉) |
126 | 105 | eldifbd 3900 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) |
127 | 122 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ran 〈“𝐼𝐽𝐾”〉 = {𝐼, 𝐽, 𝐾}) |
128 | 126, 127 | neleqtrrd 2861 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ ran 〈“𝐼𝐽𝐾”〉) |
129 | 125, 128 | ssneldd 3924 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ ran 〈“𝐼𝐽”〉) |
130 | 1, 110, 112, 114, 106, 129 | cycpmfv3 31382 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐽”〉)‘𝑥) = 𝑥) |
131 | 130 | fveq2d 6778 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐾”〉)‘((𝐶‘〈“𝐼𝐽”〉)‘𝑥)) = ((𝐶‘〈“𝐼𝐾”〉)‘𝑥)) |
132 | 4, 6 | s2cld 14584 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐼𝐾”〉 ∈ Word 𝐷) |
133 | 132 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 〈“𝐼𝐾”〉 ∈ Word 𝐷) |
134 | 4, 6, 17 | s2f1 31219 |
. . . . . . . 8
⊢ (𝜑 → 〈“𝐼𝐾”〉:dom 〈“𝐼𝐾”〉–1-1→𝐷) |
135 | 134 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 〈“𝐼𝐾”〉:dom 〈“𝐼𝐾”〉–1-1→𝐷) |
136 | | tpid3g 4708 |
. . . . . . . . . . . 12
⊢ (𝐾 ∈ 𝐷 → 𝐾 ∈ {𝐼, 𝐽, 𝐾}) |
137 | 6, 136 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐾 ∈ {𝐼, 𝐽, 𝐾}) |
138 | 116, 137 | prssd 4755 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐼, 𝐾} ⊆ {𝐼, 𝐽, 𝐾}) |
139 | 138 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → {𝐼, 𝐾} ⊆ {𝐼, 𝐽, 𝐾}) |
140 | 4, 6 | s2rn 31218 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 〈“𝐼𝐾”〉 = {𝐼, 𝐾}) |
141 | 140 | eqcomd 2744 |
. . . . . . . . . 10
⊢ (𝜑 → {𝐼, 𝐾} = ran 〈“𝐼𝐾”〉) |
142 | 141 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → {𝐼, 𝐾} = ran 〈“𝐼𝐾”〉) |
143 | 123 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → {𝐼, 𝐽, 𝐾} = ran 〈“𝐼𝐽𝐾”〉) |
144 | 139, 142,
143 | 3sstr3d 3967 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ran 〈“𝐼𝐾”〉 ⊆ ran 〈“𝐼𝐽𝐾”〉) |
145 | 144, 128 | ssneldd 3924 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ ran 〈“𝐼𝐾”〉) |
146 | 1, 110, 133, 135, 106, 145 | cycpmfv3 31382 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐾”〉)‘𝑥) = 𝑥) |
147 | 109, 131,
146 | 3eqtrd 2782 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = 𝑥) |
148 | 31 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉)) = ((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))) |
149 | 148 | fveq1d 6776 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) ∘ (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
150 | 4, 5, 6 | s3cld 14585 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
151 | 150 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 〈“𝐼𝐽𝐾”〉 ∈ Word 𝐷) |
152 | 4, 5, 6, 7, 8, 9 | s3f1 31221 |
. . . . . . 7
⊢ (𝜑 → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
153 | 152 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 〈“𝐼𝐽𝐾”〉:dom 〈“𝐼𝐽𝐾”〉–1-1→𝐷) |
154 | 1, 110, 151, 153, 106, 128 | cycpmfv3 31382 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = 𝑥) |
155 | 147, 149,
154 | 3eqtr4rd 2789 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
156 | 155 | adantlr 712 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ 𝐷) ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
157 | | tpssi 4769 |
. . . . . . . 8
⊢ ((𝐼 ∈ 𝐷 ∧ 𝐽 ∈ 𝐷 ∧ 𝐾 ∈ 𝐷) → {𝐼, 𝐽, 𝐾} ⊆ 𝐷) |
158 | 4, 5, 6, 157 | syl3anc 1370 |
. . . . . . 7
⊢ (𝜑 → {𝐼, 𝐽, 𝐾} ⊆ 𝐷) |
159 | | undif 4415 |
. . . . . . 7
⊢ ({𝐼, 𝐽, 𝐾} ⊆ 𝐷 ↔ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) = 𝐷) |
160 | 158, 159 | sylib 217 |
. . . . . 6
⊢ (𝜑 → ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) = 𝐷) |
161 | 160 | eleq2d 2824 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) ↔ 𝑥 ∈ 𝐷)) |
162 | 161 | biimpar 478 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → 𝑥 ∈ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾}))) |
163 | | elun 4083 |
. . . 4
⊢ (𝑥 ∈ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) ↔ (𝑥 ∈ {𝐼, 𝐽, 𝐾} ∨ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾}))) |
164 | 162, 163 | sylib 217 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → (𝑥 ∈ {𝐼, 𝐽, 𝐾} ∨ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾}))) |
165 | 102, 156,
164 | mpjaodan 956 |
. 2
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐷) → ((𝐶‘〈“𝐼𝐽𝐾”〉)‘𝑥) = (((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))‘𝑥)) |
166 | 14, 25, 165 | eqfnfvd 6912 |
1
⊢ (𝜑 → (𝐶‘〈“𝐼𝐽𝐾”〉) = ((𝐶‘〈“𝐼𝐾”〉) · (𝐶‘〈“𝐼𝐽”〉))) |