Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cyc3co2 Structured version   Visualization version   GIF version

Theorem cyc3co2 31080
Description: Represent a 3-cycle as a composition of two 2-cycles. (Contributed by Thierry Arnoux, 19-Sep-2023.)
Hypotheses
Ref Expression
cycpm3.c 𝐶 = (toCyc‘𝐷)
cycpm3.s 𝑆 = (SymGrp‘𝐷)
cycpm3.d (𝜑𝐷𝑉)
cycpm3.i (𝜑𝐼𝐷)
cycpm3.j (𝜑𝐽𝐷)
cycpm3.k (𝜑𝐾𝐷)
cycpm3.1 (𝜑𝐼𝐽)
cycpm3.2 (𝜑𝐽𝐾)
cycpm3.3 (𝜑𝐾𝐼)
cyc3co2.t · = (+g𝑆)
Assertion
Ref Expression
cyc3co2 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) = ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)))

Proof of Theorem cyc3co2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 cycpm3.c . . . . 5 𝐶 = (toCyc‘𝐷)
2 cycpm3.s . . . . 5 𝑆 = (SymGrp‘𝐷)
3 cycpm3.d . . . . 5 (𝜑𝐷𝑉)
4 cycpm3.i . . . . 5 (𝜑𝐼𝐷)
5 cycpm3.j . . . . 5 (𝜑𝐽𝐷)
6 cycpm3.k . . . . 5 (𝜑𝐾𝐷)
7 cycpm3.1 . . . . 5 (𝜑𝐼𝐽)
8 cycpm3.2 . . . . 5 (𝜑𝐽𝐾)
9 cycpm3.3 . . . . 5 (𝜑𝐾𝐼)
101, 2, 3, 4, 5, 6, 7, 8, 9cycpm3cl 31075 . . . 4 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) ∈ (Base‘𝑆))
11 eqid 2736 . . . . 5 (Base‘𝑆) = (Base‘𝑆)
122, 11symgbasf 18722 . . . 4 ((𝐶‘⟨“𝐼𝐽𝐾”⟩) ∈ (Base‘𝑆) → (𝐶‘⟨“𝐼𝐽𝐾”⟩):𝐷𝐷)
1310, 12syl 17 . . 3 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩):𝐷𝐷)
1413ffnd 6524 . 2 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) Fn 𝐷)
152symggrp 18746 . . . . . 6 (𝐷𝑉𝑆 ∈ Grp)
163, 15syl 17 . . . . 5 (𝜑𝑆 ∈ Grp)
179necomd 2987 . . . . . 6 (𝜑𝐼𝐾)
181, 3, 4, 6, 17, 2cycpm2cl 31060 . . . . 5 (𝜑 → (𝐶‘⟨“𝐼𝐾”⟩) ∈ (Base‘𝑆))
191, 3, 4, 5, 7, 2cycpm2cl 31060 . . . . 5 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆))
20 cyc3co2.t . . . . . 6 · = (+g𝑆)
2111, 20grpcl 18327 . . . . 5 ((𝑆 ∈ Grp ∧ (𝐶‘⟨“𝐼𝐾”⟩) ∈ (Base‘𝑆) ∧ (𝐶‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆)) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) ∈ (Base‘𝑆))
2216, 18, 19, 21syl3anc 1373 . . . 4 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) ∈ (Base‘𝑆))
232, 11symgbasf 18722 . . . 4 (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) ∈ (Base‘𝑆) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)):𝐷𝐷)
2422, 23syl 17 . . 3 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)):𝐷𝐷)
2524ffnd 6524 . 2 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) Fn 𝐷)
261, 2, 3, 4, 5, 6, 7, 8, 9cyc3fv1 31077 . . . . . . . 8 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐼) = 𝐽)
2726adantr 484 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐼) = 𝐽)
28 simpr 488 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → 𝑥 = 𝐼)
2928fveq2d 6699 . . . . . . 7 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐼))
302, 11, 20symgov 18730 . . . . . . . . . . 11 (((𝐶‘⟨“𝐼𝐾”⟩) ∈ (Base‘𝑆) ∧ (𝐶‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆)) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) = ((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩)))
3118, 19, 30syl2anc 587 . . . . . . . . . 10 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) = ((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩)))
3231adantr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) = ((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩)))
3332fveq1d 6697 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
342, 11symgbasf 18722 . . . . . . . . . . . 12 ((𝐶‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆) → (𝐶‘⟨“𝐼𝐽”⟩):𝐷𝐷)
3519, 34syl 17 . . . . . . . . . . 11 (𝜑 → (𝐶‘⟨“𝐼𝐽”⟩):𝐷𝐷)
3635ffund 6527 . . . . . . . . . 10 (𝜑 → Fun (𝐶‘⟨“𝐼𝐽”⟩))
374adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → 𝐼𝐷)
3834fdmd 6534 . . . . . . . . . . . . 13 ((𝐶‘⟨“𝐼𝐽”⟩) ∈ (Base‘𝑆) → dom (𝐶‘⟨“𝐼𝐽”⟩) = 𝐷)
3919, 38syl 17 . . . . . . . . . . . 12 (𝜑 → dom (𝐶‘⟨“𝐼𝐽”⟩) = 𝐷)
4039adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → dom (𝐶‘⟨“𝐼𝐽”⟩) = 𝐷)
4137, 28, 403eltr4d 2846 . . . . . . . . . 10 ((𝜑𝑥 = 𝐼) → 𝑥 ∈ dom (𝐶‘⟨“𝐼𝐽”⟩))
42 fvco 6787 . . . . . . . . . 10 ((Fun (𝐶‘⟨“𝐼𝐽”⟩) ∧ 𝑥 ∈ dom (𝐶‘⟨“𝐼𝐽”⟩)) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)))
4336, 41, 42syl2an2r 685 . . . . . . . . 9 ((𝜑𝑥 = 𝐼) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)))
4428fveq2d 6699 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼))
451, 3, 4, 5, 7, 2cyc2fv1 31061 . . . . . . . . . . . 12 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
4645adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐼) = 𝐽)
4744, 46eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = 𝐽)
4847fveq2d 6699 . . . . . . . . 9 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)) = ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐽))
498necomd 2987 . . . . . . . . . . 11 (𝜑𝐾𝐽)
507necomd 2987 . . . . . . . . . . 11 (𝜑𝐽𝐼)
511, 2, 3, 4, 6, 5, 17, 49, 50cyc2fvx 31074 . . . . . . . . . 10 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐽) = 𝐽)
5251adantr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐽) = 𝐽)
5343, 48, 523eqtrd 2775 . . . . . . . 8 ((𝜑𝑥 = 𝐼) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝐽)
5433, 53eqtrd 2771 . . . . . . 7 ((𝜑𝑥 = 𝐼) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝐽)
5527, 29, 543eqtr4d 2781 . . . . . 6 ((𝜑𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
5655adantlr 715 . . . . 5 (((𝜑𝑥 ∈ {𝐼, 𝐽, 𝐾}) ∧ 𝑥 = 𝐼) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
571, 2, 3, 4, 5, 6, 7, 8, 9cyc3fv2 31078 . . . . . . . 8 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐽) = 𝐾)
5857adantr 484 . . . . . . 7 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐽) = 𝐾)
59 simpr 488 . . . . . . . 8 ((𝜑𝑥 = 𝐽) → 𝑥 = 𝐽)
6059fveq2d 6699 . . . . . . 7 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐽))
6131adantr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) = ((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩)))
6261fveq1d 6697 . . . . . . . 8 ((𝜑𝑥 = 𝐽) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
635adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐽) → 𝐽𝐷)
6439adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐽) → dom (𝐶‘⟨“𝐼𝐽”⟩) = 𝐷)
6563, 59, 643eltr4d 2846 . . . . . . . . . 10 ((𝜑𝑥 = 𝐽) → 𝑥 ∈ dom (𝐶‘⟨“𝐼𝐽”⟩))
6636, 65, 42syl2an2r 685 . . . . . . . . 9 ((𝜑𝑥 = 𝐽) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)))
6759fveq2d 6699 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐽))
681, 3, 4, 5, 7, 2cyc2fv2 31062 . . . . . . . . . . . 12 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐽) = 𝐼)
6968adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐽) = 𝐼)
7067, 69eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = 𝐼)
7170fveq2d 6699 . . . . . . . . 9 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)) = ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐼))
721, 3, 4, 6, 17, 2cyc2fv1 31061 . . . . . . . . . 10 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐼) = 𝐾)
7372adantr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐼) = 𝐾)
7466, 71, 733eqtrd 2775 . . . . . . . 8 ((𝜑𝑥 = 𝐽) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝐾)
7562, 74eqtrd 2771 . . . . . . 7 ((𝜑𝑥 = 𝐽) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝐾)
7658, 60, 753eqtr4d 2781 . . . . . 6 ((𝜑𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
7776adantlr 715 . . . . 5 (((𝜑𝑥 ∈ {𝐼, 𝐽, 𝐾}) ∧ 𝑥 = 𝐽) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
781, 2, 3, 4, 5, 6, 7, 8, 9cyc3fv3 31079 . . . . . . . 8 (𝜑 → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐾) = 𝐼)
7978adantr 484 . . . . . . 7 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐾) = 𝐼)
80 simpr 488 . . . . . . . 8 ((𝜑𝑥 = 𝐾) → 𝑥 = 𝐾)
8180fveq2d 6699 . . . . . . 7 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝐾))
8231adantr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) = ((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩)))
8382fveq1d 6697 . . . . . . . 8 ((𝜑𝑥 = 𝐾) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
846adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐾) → 𝐾𝐷)
8539adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐾) → dom (𝐶‘⟨“𝐼𝐽”⟩) = 𝐷)
8684, 80, 853eltr4d 2846 . . . . . . . . . 10 ((𝜑𝑥 = 𝐾) → 𝑥 ∈ dom (𝐶‘⟨“𝐼𝐽”⟩))
8736, 86, 42syl2an2r 685 . . . . . . . . 9 ((𝜑𝑥 = 𝐾) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)))
8880fveq2d 6699 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾))
891, 2, 3, 4, 5, 6, 7, 8, 9cyc2fvx 31074 . . . . . . . . . . . 12 (𝜑 → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾) = 𝐾)
9089adantr 484 . . . . . . . . . . 11 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝐾) = 𝐾)
9188, 90eqtrd 2771 . . . . . . . . . 10 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = 𝐾)
9291fveq2d 6699 . . . . . . . . 9 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)) = ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐾))
931, 3, 4, 6, 17, 2cyc2fv2 31062 . . . . . . . . . 10 (𝜑 → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐾) = 𝐼)
9493adantr 484 . . . . . . . . 9 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝐾) = 𝐼)
9587, 92, 943eqtrd 2775 . . . . . . . 8 ((𝜑𝑥 = 𝐾) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝐼)
9683, 95eqtrd 2771 . . . . . . 7 ((𝜑𝑥 = 𝐾) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝐼)
9779, 81, 963eqtr4d 2781 . . . . . 6 ((𝜑𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
9897adantlr 715 . . . . 5 (((𝜑𝑥 ∈ {𝐼, 𝐽, 𝐾}) ∧ 𝑥 = 𝐾) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
99 eltpi 4589 . . . . . 6 (𝑥 ∈ {𝐼, 𝐽, 𝐾} → (𝑥 = 𝐼𝑥 = 𝐽𝑥 = 𝐾))
10099adantl 485 . . . . 5 ((𝜑𝑥 ∈ {𝐼, 𝐽, 𝐾}) → (𝑥 = 𝐼𝑥 = 𝐽𝑥 = 𝐾))
10156, 77, 98, 100mpjao3dan 1433 . . . 4 ((𝜑𝑥 ∈ {𝐼, 𝐽, 𝐾}) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
102101adantlr 715 . . 3 (((𝜑𝑥𝐷) ∧ 𝑥 ∈ {𝐼, 𝐽, 𝐾}) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
10335adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (𝐶‘⟨“𝐼𝐽”⟩):𝐷𝐷)
104103ffund 6527 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → Fun (𝐶‘⟨“𝐼𝐽”⟩))
105 simpr 488 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾}))
106105eldifad 3865 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝑥𝐷)
10739adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → dom (𝐶‘⟨“𝐼𝐽”⟩) = 𝐷)
108106, 107eleqtrrd 2834 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝑥 ∈ dom (𝐶‘⟨“𝐼𝐽”⟩))
109104, 108, 42syl2anc 587 . . . . . 6 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)))
1103adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → 𝐷𝑉)
1114, 5s2cld 14401 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
112111adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ⟨“𝐼𝐽”⟩ ∈ Word 𝐷)
1134, 5, 7s2f1 30893 . . . . . . . . 9 (𝜑 → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
114113adantr 484 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ⟨“𝐼𝐽”⟩:dom ⟨“𝐼𝐽”⟩–1-1𝐷)
115 tpid1g 4671 . . . . . . . . . . . . 13 (𝐼𝐷𝐼 ∈ {𝐼, 𝐽, 𝐾})
1164, 115syl 17 . . . . . . . . . . . 12 (𝜑𝐼 ∈ {𝐼, 𝐽, 𝐾})
117 tpid2g 4673 . . . . . . . . . . . . 13 (𝐽𝐷𝐽 ∈ {𝐼, 𝐽, 𝐾})
1185, 117syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ {𝐼, 𝐽, 𝐾})
119116, 118prssd 4721 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} ⊆ {𝐼, 𝐽, 𝐾})
1204, 5s2rn 30892 . . . . . . . . . . . 12 (𝜑 → ran ⟨“𝐼𝐽”⟩ = {𝐼, 𝐽})
121120eqcomd 2742 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽} = ran ⟨“𝐼𝐽”⟩)
1224, 5, 6s3rn 30894 . . . . . . . . . . . 12 (𝜑 → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})
123122eqcomd 2742 . . . . . . . . . . 11 (𝜑 → {𝐼, 𝐽, 𝐾} = ran ⟨“𝐼𝐽𝐾”⟩)
124119, 121, 1233sstr3d 3933 . . . . . . . . . 10 (𝜑 → ran ⟨“𝐼𝐽”⟩ ⊆ ran ⟨“𝐼𝐽𝐾”⟩)
125124adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ran ⟨“𝐼𝐽”⟩ ⊆ ran ⟨“𝐼𝐽𝐾”⟩)
126105eldifbd 3866 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ {𝐼, 𝐽, 𝐾})
127122adantr 484 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ran ⟨“𝐼𝐽𝐾”⟩ = {𝐼, 𝐽, 𝐾})
128126, 127neleqtrrd 2853 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ ran ⟨“𝐼𝐽𝐾”⟩)
129125, 128ssneldd 3890 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ ran ⟨“𝐼𝐽”⟩)
1301, 110, 112, 114, 106, 129cycpmfv3 31055 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥) = 𝑥)
131130fveq2d 6699 . . . . . 6 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐾”⟩)‘((𝐶‘⟨“𝐼𝐽”⟩)‘𝑥)) = ((𝐶‘⟨“𝐼𝐾”⟩)‘𝑥))
1324, 6s2cld 14401 . . . . . . . 8 (𝜑 → ⟨“𝐼𝐾”⟩ ∈ Word 𝐷)
133132adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ⟨“𝐼𝐾”⟩ ∈ Word 𝐷)
1344, 6, 17s2f1 30893 . . . . . . . 8 (𝜑 → ⟨“𝐼𝐾”⟩:dom ⟨“𝐼𝐾”⟩–1-1𝐷)
135134adantr 484 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ⟨“𝐼𝐾”⟩:dom ⟨“𝐼𝐾”⟩–1-1𝐷)
136 tpid3g 4674 . . . . . . . . . . . 12 (𝐾𝐷𝐾 ∈ {𝐼, 𝐽, 𝐾})
1376, 136syl 17 . . . . . . . . . . 11 (𝜑𝐾 ∈ {𝐼, 𝐽, 𝐾})
138116, 137prssd 4721 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐾} ⊆ {𝐼, 𝐽, 𝐾})
139138adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → {𝐼, 𝐾} ⊆ {𝐼, 𝐽, 𝐾})
1404, 6s2rn 30892 . . . . . . . . . . 11 (𝜑 → ran ⟨“𝐼𝐾”⟩ = {𝐼, 𝐾})
141140eqcomd 2742 . . . . . . . . . 10 (𝜑 → {𝐼, 𝐾} = ran ⟨“𝐼𝐾”⟩)
142141adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → {𝐼, 𝐾} = ran ⟨“𝐼𝐾”⟩)
143123adantr 484 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → {𝐼, 𝐽, 𝐾} = ran ⟨“𝐼𝐽𝐾”⟩)
144139, 142, 1433sstr3d 3933 . . . . . . . 8 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ran ⟨“𝐼𝐾”⟩ ⊆ ran ⟨“𝐼𝐽𝐾”⟩)
145144, 128ssneldd 3890 . . . . . . 7 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ¬ 𝑥 ∈ ran ⟨“𝐼𝐾”⟩)
1461, 110, 133, 135, 106, 145cycpmfv3 31055 . . . . . 6 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐾”⟩)‘𝑥) = 𝑥)
147109, 131, 1463eqtrd 2775 . . . . 5 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = 𝑥)
14831adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)) = ((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩)))
149148fveq1d 6697 . . . . 5 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) ∘ (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
1504, 5, 6s3cld 14402 . . . . . . 7 (𝜑 → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
151150adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ⟨“𝐼𝐽𝐾”⟩ ∈ Word 𝐷)
1524, 5, 6, 7, 8, 9s3f1 30895 . . . . . . 7 (𝜑 → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
153152adantr 484 . . . . . 6 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ⟨“𝐼𝐽𝐾”⟩:dom ⟨“𝐼𝐽𝐾”⟩–1-1𝐷)
1541, 110, 151, 153, 106, 128cycpmfv3 31055 . . . . 5 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = 𝑥)
155147, 149, 1543eqtr4rd 2782 . . . 4 ((𝜑𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
156155adantlr 715 . . 3 (((𝜑𝑥𝐷) ∧ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
157 tpssi 4735 . . . . . . . 8 ((𝐼𝐷𝐽𝐷𝐾𝐷) → {𝐼, 𝐽, 𝐾} ⊆ 𝐷)
1584, 5, 6, 157syl3anc 1373 . . . . . . 7 (𝜑 → {𝐼, 𝐽, 𝐾} ⊆ 𝐷)
159 undif 4382 . . . . . . 7 ({𝐼, 𝐽, 𝐾} ⊆ 𝐷 ↔ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) = 𝐷)
160158, 159sylib 221 . . . . . 6 (𝜑 → ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) = 𝐷)
161160eleq2d 2816 . . . . 5 (𝜑 → (𝑥 ∈ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) ↔ 𝑥𝐷))
162161biimpar 481 . . . 4 ((𝜑𝑥𝐷) → 𝑥 ∈ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})))
163 elun 4049 . . . 4 (𝑥 ∈ ({𝐼, 𝐽, 𝐾} ∪ (𝐷 ∖ {𝐼, 𝐽, 𝐾})) ↔ (𝑥 ∈ {𝐼, 𝐽, 𝐾} ∨ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})))
164162, 163sylib 221 . . 3 ((𝜑𝑥𝐷) → (𝑥 ∈ {𝐼, 𝐽, 𝐾} ∨ 𝑥 ∈ (𝐷 ∖ {𝐼, 𝐽, 𝐾})))
165102, 156, 164mpjaodan 959 . 2 ((𝜑𝑥𝐷) → ((𝐶‘⟨“𝐼𝐽𝐾”⟩)‘𝑥) = (((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩))‘𝑥))
16614, 25, 165eqfnfvd 6833 1 (𝜑 → (𝐶‘⟨“𝐼𝐽𝐾”⟩) = ((𝐶‘⟨“𝐼𝐾”⟩) · (𝐶‘⟨“𝐼𝐽”⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wo 847  w3o 1088   = wceq 1543  wcel 2112  wne 2932  cdif 3850  cun 3851  wss 3853  {cpr 4529  {ctp 4531  dom cdm 5536  ran crn 5537  ccom 5540  Fun wfun 6352  wf 6354  1-1wf1 6355  cfv 6358  (class class class)co 7191  Word cword 14034  ⟨“cs2 14371  ⟨“cs3 14372  Basecbs 16666  +gcplusg 16749  Grpcgrp 18319  SymGrpcsymg 18713  toCycctocyc 31046
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5243  ax-pr 5307  ax-un 7501  ax-cnex 10750  ax-resscn 10751  ax-1cn 10752  ax-icn 10753  ax-addcl 10754  ax-addrcl 10755  ax-mulcl 10756  ax-mulrcl 10757  ax-mulcom 10758  ax-addass 10759  ax-mulass 10760  ax-distr 10761  ax-i2m1 10762  ax-1ne0 10763  ax-1rid 10764  ax-rnegex 10765  ax-rrecex 10766  ax-cnre 10767  ax-pre-lttri 10768  ax-pre-lttrn 10769  ax-pre-ltadd 10770  ax-pre-mulgt0 10771  ax-pre-sup 10772
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-int 4846  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-riota 7148  df-ov 7194  df-oprab 7195  df-mpo 7196  df-om 7623  df-1st 7739  df-2nd 7740  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-1o 8180  df-er 8369  df-map 8488  df-en 8605  df-dom 8606  df-sdom 8607  df-fin 8608  df-sup 9036  df-inf 9037  df-card 9520  df-pnf 10834  df-mnf 10835  df-xr 10836  df-ltxr 10837  df-le 10838  df-sub 11029  df-neg 11030  df-div 11455  df-nn 11796  df-2 11858  df-3 11859  df-4 11860  df-5 11861  df-6 11862  df-7 11863  df-8 11864  df-9 11865  df-n0 12056  df-z 12142  df-uz 12404  df-rp 12552  df-fz 13061  df-fzo 13204  df-fl 13332  df-mod 13408  df-hash 13862  df-word 14035  df-concat 14091  df-s1 14118  df-substr 14171  df-pfx 14201  df-csh 14319  df-s2 14378  df-s3 14379  df-struct 16668  df-ndx 16669  df-slot 16670  df-base 16672  df-sets 16673  df-ress 16674  df-plusg 16762  df-tset 16768  df-0g 16900  df-mgm 18068  df-sgrp 18117  df-mnd 18128  df-efmnd 18250  df-grp 18322  df-symg 18714  df-tocyc 31047
This theorem is referenced by:  cyc3evpm  31090  cyc3genpmlem  31091
  Copyright terms: Public domain W3C validator