Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzlem Structured version   Visualization version   GIF version

Theorem limsupequzlem 45643
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzlem.1 𝑘𝜑
limsupequzlem.2 (𝜑𝑀 ∈ ℤ)
limsupequzlem.4 (𝜑𝐹 Fn (ℤ𝑀))
limsupequzlem.5 (𝜑𝑁 ∈ ℤ)
limsupequzlem.6 (𝜑𝐺 Fn (ℤ𝑁))
limsupequzlem.7 (𝜑𝐾 ∈ ℤ)
limsupequzlem.8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
limsupequzlem (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem limsupequzlem
StepHypRef Expression
1 limsupequzlem.1 . . . . 5 𝑘𝜑
2 eqid 2740 . . . . . . 7 (ℤ𝐾) = (ℤ𝐾)
3 limsupequzlem.7 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
43adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℤ)
5 eluzelz 12913 . . . . . . . 8 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℤ)
65adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℤ)
73zred 12747 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ)
98rexrd 11340 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ*)
10 zssxr 45312 . . . . . . . . . 10 ℤ ⊆ ℝ*
11 limsupequzlem.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
12 limsupequzlem.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
13 tpssi 4863 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
1411, 12, 3, 13syl3anc 1371 . . . . . . . . . . 11 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
15 xrltso 13203 . . . . . . . . . . . . 13 < Or ℝ*
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ*)
17 tpfi 9393 . . . . . . . . . . . . 13 {𝑀, 𝑁, 𝐾} ∈ Fin
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ∈ Fin)
1911tpnzd 4805 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ≠ ∅)
2010a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ ℝ*)
2114, 20sstrd 4019 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℝ*)
22 fisupcl 9538 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ({𝑀, 𝑁, 𝐾} ∈ Fin ∧ {𝑀, 𝑁, 𝐾} ≠ ∅ ∧ {𝑀, 𝑁, 𝐾} ⊆ ℝ*)) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2316, 18, 19, 21, 22syl13anc 1372 . . . . . . . . . . 11 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2414, 23sseldd 4009 . . . . . . . . . 10 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℤ)
2510, 24sselid 4006 . . . . . . . . 9 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
2625adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
27 eluzelre 12914 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℝ)
2827adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ)
2928rexrd 11340 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ*)
30 tpid3g 4797 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ {𝑀, 𝑁, 𝐾})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ {𝑀, 𝑁, 𝐾})
32 eqid 2740 . . . . . . . . . 10 sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) = sup({𝑀, 𝑁, 𝐾}, ℝ*, < )
3321, 31, 32supxrubd 45015 . . . . . . . . 9 (𝜑𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
3433adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
35 eluzle 12916 . . . . . . . . 9 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
3635adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
379, 26, 29, 34, 36xrletrd 13224 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾𝑘)
382, 4, 6, 37eluzd 45324 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ (ℤ𝐾))
39 limsupequzlem.8 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
4038, 39syldan 590 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → (𝐹𝑘) = (𝐺𝑘))
411, 40ralrimia 3264 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘))
42 limsupequzlem.4 . . . . 5 (𝜑𝐹 Fn (ℤ𝑀))
43 limsupequzlem.6 . . . . 5 (𝜑𝐺 Fn (ℤ𝑁))
44 eqid 2740 . . . . . . 7 (ℤ𝑀) = (ℤ𝑀)
45 tpid1g 4794 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁, 𝐾})
4611, 45syl 17 . . . . . . . 8 (𝜑𝑀 ∈ {𝑀, 𝑁, 𝐾})
4721, 46, 32supxrubd 45015 . . . . . . 7 (𝜑𝑀 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
4844, 11, 24, 47eluzd 45324 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀))
49 uzss 12926 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
51 eqid 2740 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
52 tpid2g 4796 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁, 𝐾})
5312, 52syl 17 . . . . . . . 8 (𝜑𝑁 ∈ {𝑀, 𝑁, 𝐾})
5421, 53, 32supxrubd 45015 . . . . . . 7 (𝜑𝑁 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
5551, 12, 24, 54eluzd 45324 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁))
56 uzss 12926 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
5755, 56syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
58 fvreseq0 7071 . . . . 5 (((𝐹 Fn (ℤ𝑀) ∧ 𝐺 Fn (ℤ𝑁)) ∧ ((ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀) ∧ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))) → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
5942, 43, 50, 57, 58syl22anc 838 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
6041, 59mpbird 257 . . 3 (𝜑 → (𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))))
6160fveq2d 6924 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))))
62 eqid 2740 . . 3 (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) = (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
63 fvexd 6935 . . . 4 (𝜑 → (ℤ𝑀) ∈ V)
6442, 63fnexd 7255 . . 3 (𝜑𝐹 ∈ V)
6542fndmd 6684 . . . 4 (𝜑 → dom 𝐹 = (ℤ𝑀))
66 uzssz 12924 . . . 4 (ℤ𝑀) ⊆ ℤ
6765, 66eqsstrdi 4063 . . 3 (𝜑 → dom 𝐹 ⊆ ℤ)
6824, 62, 64, 67limsupresuz2 45630 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐹))
69 fvexd 6935 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
7043, 69fnexd 7255 . . 3 (𝜑𝐺 ∈ V)
7143fndmd 6684 . . . 4 (𝜑 → dom 𝐺 = (ℤ𝑁))
72 uzssz 12924 . . . 4 (ℤ𝑁) ⊆ ℤ
7371, 72eqsstrdi 4063 . . 3 (𝜑 → dom 𝐺 ⊆ ℤ)
7424, 62, 70, 73limsupresuz2 45630 . 2 (𝜑 → (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐺))
7561, 68, 743eqtr3d 2788 1 (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1781  wcel 2108  wne 2946  wral 3067  Vcvv 3488  wss 3976  c0 4352  {ctp 4652   class class class wbr 5166   Or wor 5606  dom cdm 5700  cres 5702   Fn wfn 6568  cfv 6573  Fincfn 9003  supcsup 9509  cr 11183  *cxr 11323   < clt 11324  cle 11325  cz 12639  cuz 12903  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-ico 13413  df-limsup 15517
This theorem is referenced by:  limsupequz  45644
  Copyright terms: Public domain W3C validator