Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzlem Structured version   Visualization version   GIF version

Theorem limsupequzlem 43263
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzlem.1 𝑘𝜑
limsupequzlem.2 (𝜑𝑀 ∈ ℤ)
limsupequzlem.4 (𝜑𝐹 Fn (ℤ𝑀))
limsupequzlem.5 (𝜑𝑁 ∈ ℤ)
limsupequzlem.6 (𝜑𝐺 Fn (ℤ𝑁))
limsupequzlem.7 (𝜑𝐾 ∈ ℤ)
limsupequzlem.8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
limsupequzlem (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem limsupequzlem
StepHypRef Expression
1 limsupequzlem.1 . . . . 5 𝑘𝜑
2 eqid 2738 . . . . . . 7 (ℤ𝐾) = (ℤ𝐾)
3 limsupequzlem.7 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
43adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℤ)
5 eluzelz 12592 . . . . . . . 8 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℤ)
65adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℤ)
73zred 12426 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
87adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ)
98rexrd 11025 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ*)
10 zssxr 42937 . . . . . . . . . 10 ℤ ⊆ ℝ*
11 limsupequzlem.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
12 limsupequzlem.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
13 tpssi 4769 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
1411, 12, 3, 13syl3anc 1370 . . . . . . . . . . 11 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
15 xrltso 12875 . . . . . . . . . . . . 13 < Or ℝ*
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ*)
17 tpfi 9090 . . . . . . . . . . . . 13 {𝑀, 𝑁, 𝐾} ∈ Fin
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ∈ Fin)
1911tpnzd 4716 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ≠ ∅)
2010a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ ℝ*)
2114, 20sstrd 3931 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℝ*)
22 fisupcl 9228 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ({𝑀, 𝑁, 𝐾} ∈ Fin ∧ {𝑀, 𝑁, 𝐾} ≠ ∅ ∧ {𝑀, 𝑁, 𝐾} ⊆ ℝ*)) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2316, 18, 19, 21, 22syl13anc 1371 . . . . . . . . . . 11 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2414, 23sseldd 3922 . . . . . . . . . 10 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℤ)
2510, 24sselid 3919 . . . . . . . . 9 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
2625adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
27 eluzelre 12593 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℝ)
2827adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ)
2928rexrd 11025 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ*)
30 tpid3g 4708 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ {𝑀, 𝑁, 𝐾})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ {𝑀, 𝑁, 𝐾})
32 eqid 2738 . . . . . . . . . 10 sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) = sup({𝑀, 𝑁, 𝐾}, ℝ*, < )
3321, 31, 32supxrubd 42663 . . . . . . . . 9 (𝜑𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
3433adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
35 eluzle 12595 . . . . . . . . 9 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
3635adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
379, 26, 29, 34, 36xrletrd 12896 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾𝑘)
382, 4, 6, 37eluzd 42949 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ (ℤ𝐾))
39 limsupequzlem.8 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
4038, 39syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → (𝐹𝑘) = (𝐺𝑘))
411, 40ralrimia 3430 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘))
42 limsupequzlem.4 . . . . 5 (𝜑𝐹 Fn (ℤ𝑀))
43 limsupequzlem.6 . . . . 5 (𝜑𝐺 Fn (ℤ𝑁))
44 eqid 2738 . . . . . . 7 (ℤ𝑀) = (ℤ𝑀)
45 tpid1g 4705 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁, 𝐾})
4611, 45syl 17 . . . . . . . 8 (𝜑𝑀 ∈ {𝑀, 𝑁, 𝐾})
4721, 46, 32supxrubd 42663 . . . . . . 7 (𝜑𝑀 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
4844, 11, 24, 47eluzd 42949 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀))
49 uzss 12605 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
51 eqid 2738 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
52 tpid2g 4707 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁, 𝐾})
5312, 52syl 17 . . . . . . . 8 (𝜑𝑁 ∈ {𝑀, 𝑁, 𝐾})
5421, 53, 32supxrubd 42663 . . . . . . 7 (𝜑𝑁 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
5551, 12, 24, 54eluzd 42949 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁))
56 uzss 12605 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
5755, 56syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
58 fvreseq0 6915 . . . . 5 (((𝐹 Fn (ℤ𝑀) ∧ 𝐺 Fn (ℤ𝑁)) ∧ ((ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀) ∧ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))) → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
5942, 43, 50, 57, 58syl22anc 836 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
6041, 59mpbird 256 . . 3 (𝜑 → (𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))))
6160fveq2d 6778 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))))
62 eqid 2738 . . 3 (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) = (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
63 fvexd 6789 . . . 4 (𝜑 → (ℤ𝑀) ∈ V)
6442, 63fnexd 7094 . . 3 (𝜑𝐹 ∈ V)
6542fndmd 6538 . . . 4 (𝜑 → dom 𝐹 = (ℤ𝑀))
66 uzssz 12603 . . . 4 (ℤ𝑀) ⊆ ℤ
6765, 66eqsstrdi 3975 . . 3 (𝜑 → dom 𝐹 ⊆ ℤ)
6824, 62, 64, 67limsupresuz2 43250 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐹))
69 fvexd 6789 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
7043, 69fnexd 7094 . . 3 (𝜑𝐺 ∈ V)
7143fndmd 6538 . . . 4 (𝜑 → dom 𝐺 = (ℤ𝑁))
72 uzssz 12603 . . . 4 (ℤ𝑁) ⊆ ℤ
7371, 72eqsstrdi 3975 . . 3 (𝜑 → dom 𝐺 ⊆ ℤ)
7424, 62, 70, 73limsupresuz2 43250 . 2 (𝜑 → (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐺))
7561, 68, 743eqtr3d 2786 1 (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wne 2943  wral 3064  Vcvv 3432  wss 3887  c0 4256  {ctp 4565   class class class wbr 5074   Or wor 5502  dom cdm 5589  cres 5591   Fn wfn 6428  cfv 6433  Fincfn 8733  supcsup 9199  cr 10870  *cxr 11008   < clt 11009  cle 11010  cz 12319  cuz 12582  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-ico 13085  df-limsup 15180
This theorem is referenced by:  limsupequz  43264
  Copyright terms: Public domain W3C validator