Proof of Theorem limsupequzlem
Step | Hyp | Ref
| Expression |
1 | | limsupequzlem.1 |
. . . . 5
⊢
Ⅎ𝑘𝜑 |
2 | | eqid 2738 |
. . . . . . 7
⊢
(ℤ≥‘𝐾) = (ℤ≥‘𝐾) |
3 | | limsupequzlem.7 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 ∈ ℤ) |
4 | 3 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝐾 ∈
ℤ) |
5 | | eluzelz 12521 |
. . . . . . . 8
⊢ (𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈
ℤ) |
6 | 5 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝑘 ∈
ℤ) |
7 | 3 | zred 12355 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ ℝ) |
8 | 7 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝐾 ∈
ℝ) |
9 | 8 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝐾 ∈
ℝ*) |
10 | | zssxr 42827 |
. . . . . . . . . 10
⊢ ℤ
⊆ ℝ* |
11 | | limsupequzlem.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
12 | | limsupequzlem.5 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑁 ∈ ℤ) |
13 | | tpssi 4766 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → {𝑀, 𝑁, 𝐾} ⊆ ℤ) |
14 | 11, 12, 3, 13 | syl3anc 1369 |
. . . . . . . . . . 11
⊢ (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℤ) |
15 | | xrltso 12804 |
. . . . . . . . . . . . 13
⊢ < Or
ℝ* |
16 | 15 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → < Or
ℝ*) |
17 | | tpfi 9020 |
. . . . . . . . . . . . 13
⊢ {𝑀, 𝑁, 𝐾} ∈ Fin |
18 | 17 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑀, 𝑁, 𝐾} ∈ Fin) |
19 | 11 | tpnzd 4713 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑀, 𝑁, 𝐾} ≠ ∅) |
20 | 10 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℤ ⊆
ℝ*) |
21 | 14, 20 | sstrd 3927 |
. . . . . . . . . . . 12
⊢ (𝜑 → {𝑀, 𝑁, 𝐾} ⊆
ℝ*) |
22 | | fisupcl 9158 |
. . . . . . . . . . . 12
⊢ (( <
Or ℝ* ∧ ({𝑀, 𝑁, 𝐾} ∈ Fin ∧ {𝑀, 𝑁, 𝐾} ≠ ∅ ∧ {𝑀, 𝑁, 𝐾} ⊆ ℝ*)) →
sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾}) |
23 | 16, 18, 19, 21, 22 | syl13anc 1370 |
. . . . . . . . . . 11
⊢ (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾}) |
24 | 14, 23 | sseldd 3918 |
. . . . . . . . . 10
⊢ (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
ℤ) |
25 | 10, 24 | sselid 3915 |
. . . . . . . . 9
⊢ (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
ℝ*) |
26 | 25 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
ℝ*) |
27 | | eluzelre 12522 |
. . . . . . . . . 10
⊢ (𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈
ℝ) |
28 | 27 | adantl 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝑘 ∈
ℝ) |
29 | 28 | rexrd 10956 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝑘 ∈
ℝ*) |
30 | | tpid3g 4705 |
. . . . . . . . . . 11
⊢ (𝐾 ∈ ℤ → 𝐾 ∈ {𝑀, 𝑁, 𝐾}) |
31 | 3, 30 | syl 17 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐾 ∈ {𝑀, 𝑁, 𝐾}) |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢
sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) = sup({𝑀, 𝑁, 𝐾}, ℝ*, <
) |
33 | 21, 31, 32 | supxrubd 42552 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, <
)) |
34 | 33 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, <
)) |
35 | | eluzle 12524 |
. . . . . . . . 9
⊢ (𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) →
sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘) |
36 | 35 | adantl 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘) |
37 | 9, 26, 29, 34, 36 | xrletrd 12825 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝐾 ≤ 𝑘) |
38 | 2, 4, 6, 37 | eluzd 42839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
𝑘 ∈
(ℤ≥‘𝐾)) |
39 | | limsupequzlem.8 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝐾)) → (𝐹‘𝑘) = (𝐺‘𝑘)) |
40 | 38, 39 | syldan 590 |
. . . . 5
⊢ ((𝜑 ∧ 𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) →
(𝐹‘𝑘) = (𝐺‘𝑘)) |
41 | 1, 40 | ralrimia 3420 |
. . . 4
⊢ (𝜑 → ∀𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹‘𝑘) = (𝐺‘𝑘)) |
42 | | limsupequzlem.4 |
. . . . 5
⊢ (𝜑 → 𝐹 Fn (ℤ≥‘𝑀)) |
43 | | limsupequzlem.6 |
. . . . 5
⊢ (𝜑 → 𝐺 Fn (ℤ≥‘𝑁)) |
44 | | eqid 2738 |
. . . . . . 7
⊢
(ℤ≥‘𝑀) = (ℤ≥‘𝑀) |
45 | | tpid1g 4702 |
. . . . . . . . 9
⊢ (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁, 𝐾}) |
46 | 11, 45 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ {𝑀, 𝑁, 𝐾}) |
47 | 21, 46, 32 | supxrubd 42552 |
. . . . . . 7
⊢ (𝜑 → 𝑀 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, <
)) |
48 | 44, 11, 24, 47 | eluzd 42839 |
. . . . . 6
⊢ (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
(ℤ≥‘𝑀)) |
49 | | uzss 12534 |
. . . . . 6
⊢
(sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
(ℤ≥‘𝑀) →
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆
(ℤ≥‘𝑀)) |
50 | 48, 49 | syl 17 |
. . . . 5
⊢ (𝜑 →
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆
(ℤ≥‘𝑀)) |
51 | | eqid 2738 |
. . . . . . 7
⊢
(ℤ≥‘𝑁) = (ℤ≥‘𝑁) |
52 | | tpid2g 4704 |
. . . . . . . . 9
⊢ (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁, 𝐾}) |
53 | 12, 52 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝑁 ∈ {𝑀, 𝑁, 𝐾}) |
54 | 21, 53, 32 | supxrubd 42552 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, <
)) |
55 | 51, 12, 24, 54 | eluzd 42839 |
. . . . . 6
⊢ (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
(ℤ≥‘𝑁)) |
56 | | uzss 12534 |
. . . . . 6
⊢
(sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈
(ℤ≥‘𝑁) →
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆
(ℤ≥‘𝑁)) |
57 | 55, 56 | syl 17 |
. . . . 5
⊢ (𝜑 →
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆
(ℤ≥‘𝑁)) |
58 | | fvreseq0 6897 |
. . . . 5
⊢ (((𝐹 Fn
(ℤ≥‘𝑀) ∧ 𝐺 Fn (ℤ≥‘𝑁)) ∧
((ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆
(ℤ≥‘𝑀) ∧
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆
(ℤ≥‘𝑁))) → ((𝐹 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔
∀𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹‘𝑘) = (𝐺‘𝑘))) |
59 | 42, 43, 50, 57, 58 | syl22anc 835 |
. . . 4
⊢ (𝜑 → ((𝐹 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔
∀𝑘 ∈
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹‘𝑘) = (𝐺‘𝑘))) |
60 | 41, 59 | mpbird 256 |
. . 3
⊢ (𝜑 → (𝐹 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, <
)))) |
61 | 60 | fveq2d 6760 |
. 2
⊢ (𝜑 → (lim sup‘(𝐹 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim
sup‘(𝐺 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, <
))))) |
62 | | eqid 2738 |
. . 3
⊢
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) =
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, <
)) |
63 | | fvexd 6771 |
. . . 4
⊢ (𝜑 →
(ℤ≥‘𝑀) ∈ V) |
64 | 42, 63 | fnexd 7076 |
. . 3
⊢ (𝜑 → 𝐹 ∈ V) |
65 | 42 | fndmd 6522 |
. . . 4
⊢ (𝜑 → dom 𝐹 = (ℤ≥‘𝑀)) |
66 | | uzssz 12532 |
. . . 4
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
67 | 65, 66 | eqsstrdi 3971 |
. . 3
⊢ (𝜑 → dom 𝐹 ⊆ ℤ) |
68 | 24, 62, 64, 67 | limsupresuz2 43140 |
. 2
⊢ (𝜑 → (lim sup‘(𝐹 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim
sup‘𝐹)) |
69 | | fvexd 6771 |
. . . 4
⊢ (𝜑 →
(ℤ≥‘𝑁) ∈ V) |
70 | 43, 69 | fnexd 7076 |
. . 3
⊢ (𝜑 → 𝐺 ∈ V) |
71 | 43 | fndmd 6522 |
. . . 4
⊢ (𝜑 → dom 𝐺 = (ℤ≥‘𝑁)) |
72 | | uzssz 12532 |
. . . 4
⊢
(ℤ≥‘𝑁) ⊆ ℤ |
73 | 71, 72 | eqsstrdi 3971 |
. . 3
⊢ (𝜑 → dom 𝐺 ⊆ ℤ) |
74 | 24, 62, 70, 73 | limsupresuz2 43140 |
. 2
⊢ (𝜑 → (lim sup‘(𝐺 ↾
(ℤ≥‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim
sup‘𝐺)) |
75 | 61, 68, 74 | 3eqtr3d 2786 |
1
⊢ (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺)) |