Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzlem Structured version   Visualization version   GIF version

Theorem limsupequzlem 41545
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzlem.1 𝑘𝜑
limsupequzlem.2 (𝜑𝑀 ∈ ℤ)
limsupequzlem.4 (𝜑𝐹 Fn (ℤ𝑀))
limsupequzlem.5 (𝜑𝑁 ∈ ℤ)
limsupequzlem.6 (𝜑𝐺 Fn (ℤ𝑁))
limsupequzlem.7 (𝜑𝐾 ∈ ℤ)
limsupequzlem.8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
limsupequzlem (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem limsupequzlem
StepHypRef Expression
1 limsupequzlem.1 . . . . 5 𝑘𝜑
2 eqid 2795 . . . . . . 7 (ℤ𝐾) = (ℤ𝐾)
3 limsupequzlem.7 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
43adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℤ)
5 eluzelz 12103 . . . . . . . 8 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℤ)
65adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℤ)
73zred 11936 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
87adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ)
98rexrd 10537 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ*)
10 zssxr 41211 . . . . . . . . . 10 ℤ ⊆ ℝ*
11 limsupequzlem.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
12 limsupequzlem.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
13 tpssi 4676 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
1411, 12, 3, 13syl3anc 1364 . . . . . . . . . . 11 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
15 xrltso 12384 . . . . . . . . . . . . 13 < Or ℝ*
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ*)
17 tpfi 8640 . . . . . . . . . . . . 13 {𝑀, 𝑁, 𝐾} ∈ Fin
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ∈ Fin)
1911tpnzd 4622 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ≠ ∅)
2010a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ ℝ*)
2114, 20sstrd 3899 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℝ*)
22 fisupcl 8779 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ({𝑀, 𝑁, 𝐾} ∈ Fin ∧ {𝑀, 𝑁, 𝐾} ≠ ∅ ∧ {𝑀, 𝑁, 𝐾} ⊆ ℝ*)) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2316, 18, 19, 21, 22syl13anc 1365 . . . . . . . . . . 11 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2414, 23sseldd 3890 . . . . . . . . . 10 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℤ)
2510, 24sseldi 3887 . . . . . . . . 9 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
2625adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
27 eluzelre 12104 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℝ)
2827adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ)
2928rexrd 10537 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ*)
30 tpid3g 4615 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ {𝑀, 𝑁, 𝐾})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ {𝑀, 𝑁, 𝐾})
32 eqid 2795 . . . . . . . . . 10 sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) = sup({𝑀, 𝑁, 𝐾}, ℝ*, < )
3321, 31, 32supxrubd 40920 . . . . . . . . 9 (𝜑𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
3433adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
35 eluzle 12106 . . . . . . . . 9 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
3635adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
379, 26, 29, 34, 36xrletrd 12405 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾𝑘)
382, 4, 6, 37eluzd 41224 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ (ℤ𝐾))
39 limsupequzlem.8 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
4038, 39syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → (𝐹𝑘) = (𝐺𝑘))
411, 40ralrimia 40937 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘))
42 limsupequzlem.4 . . . . 5 (𝜑𝐹 Fn (ℤ𝑀))
43 limsupequzlem.6 . . . . 5 (𝜑𝐺 Fn (ℤ𝑁))
44 eqid 2795 . . . . . . 7 (ℤ𝑀) = (ℤ𝑀)
45 tpid1g 4612 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁, 𝐾})
4611, 45syl 17 . . . . . . . 8 (𝜑𝑀 ∈ {𝑀, 𝑁, 𝐾})
4721, 46, 32supxrubd 40920 . . . . . . 7 (𝜑𝑀 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
4844, 11, 24, 47eluzd 41224 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀))
49 uzss 12114 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
51 eqid 2795 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
52 tpid2g 4614 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁, 𝐾})
5312, 52syl 17 . . . . . . . 8 (𝜑𝑁 ∈ {𝑀, 𝑁, 𝐾})
5421, 53, 32supxrubd 40920 . . . . . . 7 (𝜑𝑁 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
5551, 12, 24, 54eluzd 41224 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁))
56 uzss 12114 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
5755, 56syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
58 fvreseq0 6673 . . . . 5 (((𝐹 Fn (ℤ𝑀) ∧ 𝐺 Fn (ℤ𝑁)) ∧ ((ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀) ∧ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))) → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
5942, 43, 50, 57, 58syl22anc 835 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
6041, 59mpbird 258 . . 3 (𝜑 → (𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))))
6160fveq2d 6542 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))))
62 eqid 2795 . . 3 (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) = (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
63 fvexd 6553 . . . 4 (𝜑 → (ℤ𝑀) ∈ V)
6442, 63fnexd 6847 . . 3 (𝜑𝐹 ∈ V)
6542fndmd 6326 . . . 4 (𝜑 → dom 𝐹 = (ℤ𝑀))
66 uzssz 12113 . . . 4 (ℤ𝑀) ⊆ ℤ
6765, 66syl6eqss 3942 . . 3 (𝜑 → dom 𝐹 ⊆ ℤ)
6824, 62, 64, 67limsupresuz2 41532 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐹))
69 fvexd 6553 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
7043, 69fnexd 6847 . . 3 (𝜑𝐺 ∈ V)
7143fndmd 6326 . . . 4 (𝜑 → dom 𝐺 = (ℤ𝑁))
72 uzssz 12113 . . . 4 (ℤ𝑁) ⊆ ℤ
7371, 72syl6eqss 3942 . . 3 (𝜑 → dom 𝐺 ⊆ ℤ)
7424, 62, 70, 73limsupresuz2 41532 . 2 (𝜑 → (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐺))
7561, 68, 743eqtr3d 2839 1 (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  wne 2984  wral 3105  Vcvv 3437  wss 3859  c0 4211  {ctp 4476   class class class wbr 4962   Or wor 5361  dom cdm 5443  cres 5445   Fn wfn 6220  cfv 6225  Fincfn 8357  supcsup 8750  cr 10382  *cxr 10520   < clt 10521  cle 10522  cz 11829  cuz 12093  lim supclsp 14661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-inf 8753  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-n0 11746  df-z 11830  df-uz 12094  df-q 12198  df-ico 12594  df-limsup 14662
This theorem is referenced by:  limsupequz  41546
  Copyright terms: Public domain W3C validator