Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupequzlem Structured version   Visualization version   GIF version

Theorem limsupequzlem 45678
Description: Two functions that are eventually equal to one another have the same superior limit. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupequzlem.1 𝑘𝜑
limsupequzlem.2 (𝜑𝑀 ∈ ℤ)
limsupequzlem.4 (𝜑𝐹 Fn (ℤ𝑀))
limsupequzlem.5 (𝜑𝑁 ∈ ℤ)
limsupequzlem.6 (𝜑𝐺 Fn (ℤ𝑁))
limsupequzlem.7 (𝜑𝐾 ∈ ℤ)
limsupequzlem.8 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
Assertion
Ref Expression
limsupequzlem (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐺   𝑘,𝐾   𝑘,𝑀   𝑘,𝑁
Allowed substitution hint:   𝜑(𝑘)

Proof of Theorem limsupequzlem
StepHypRef Expression
1 limsupequzlem.1 . . . . 5 𝑘𝜑
2 eqid 2735 . . . . . . 7 (ℤ𝐾) = (ℤ𝐾)
3 limsupequzlem.7 . . . . . . . 8 (𝜑𝐾 ∈ ℤ)
43adantr 480 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℤ)
5 eluzelz 12886 . . . . . . . 8 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℤ)
65adantl 481 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℤ)
73zred 12720 . . . . . . . . . 10 (𝜑𝐾 ∈ ℝ)
87adantr 480 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ)
98rexrd 11309 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ∈ ℝ*)
10 zssxr 45347 . . . . . . . . . 10 ℤ ⊆ ℝ*
11 limsupequzlem.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
12 limsupequzlem.5 . . . . . . . . . . . 12 (𝜑𝑁 ∈ ℤ)
13 tpssi 4843 . . . . . . . . . . . 12 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
1411, 12, 3, 13syl3anc 1370 . . . . . . . . . . 11 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℤ)
15 xrltso 13180 . . . . . . . . . . . . 13 < Or ℝ*
1615a1i 11 . . . . . . . . . . . 12 (𝜑 → < Or ℝ*)
17 tpfi 9363 . . . . . . . . . . . . 13 {𝑀, 𝑁, 𝐾} ∈ Fin
1817a1i 11 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ∈ Fin)
1911tpnzd 4785 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ≠ ∅)
2010a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℤ ⊆ ℝ*)
2114, 20sstrd 4006 . . . . . . . . . . . 12 (𝜑 → {𝑀, 𝑁, 𝐾} ⊆ ℝ*)
22 fisupcl 9507 . . . . . . . . . . . 12 (( < Or ℝ* ∧ ({𝑀, 𝑁, 𝐾} ∈ Fin ∧ {𝑀, 𝑁, 𝐾} ≠ ∅ ∧ {𝑀, 𝑁, 𝐾} ⊆ ℝ*)) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2316, 18, 19, 21, 22syl13anc 1371 . . . . . . . . . . 11 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ {𝑀, 𝑁, 𝐾})
2414, 23sseldd 3996 . . . . . . . . . 10 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℤ)
2510, 24sselid 3993 . . . . . . . . 9 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
2625adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ ℝ*)
27 eluzelre 12887 . . . . . . . . . 10 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → 𝑘 ∈ ℝ)
2827adantl 481 . . . . . . . . 9 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ)
2928rexrd 11309 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ ℝ*)
30 tpid3g 4777 . . . . . . . . . . 11 (𝐾 ∈ ℤ → 𝐾 ∈ {𝑀, 𝑁, 𝐾})
313, 30syl 17 . . . . . . . . . 10 (𝜑𝐾 ∈ {𝑀, 𝑁, 𝐾})
32 eqid 2735 . . . . . . . . . 10 sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) = sup({𝑀, 𝑁, 𝐾}, ℝ*, < )
3321, 31, 32supxrubd 45053 . . . . . . . . 9 (𝜑𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
3433adantr 480 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
35 eluzle 12889 . . . . . . . . 9 (𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
3635adantl 481 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ≤ 𝑘)
379, 26, 29, 34, 36xrletrd 13201 . . . . . . 7 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝐾𝑘)
382, 4, 6, 37eluzd 45359 . . . . . 6 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → 𝑘 ∈ (ℤ𝐾))
39 limsupequzlem.8 . . . . . 6 ((𝜑𝑘 ∈ (ℤ𝐾)) → (𝐹𝑘) = (𝐺𝑘))
4038, 39syldan 591 . . . . 5 ((𝜑𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) → (𝐹𝑘) = (𝐺𝑘))
411, 40ralrimia 3256 . . . 4 (𝜑 → ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘))
42 limsupequzlem.4 . . . . 5 (𝜑𝐹 Fn (ℤ𝑀))
43 limsupequzlem.6 . . . . 5 (𝜑𝐺 Fn (ℤ𝑁))
44 eqid 2735 . . . . . . 7 (ℤ𝑀) = (ℤ𝑀)
45 tpid1g 4774 . . . . . . . . 9 (𝑀 ∈ ℤ → 𝑀 ∈ {𝑀, 𝑁, 𝐾})
4611, 45syl 17 . . . . . . . 8 (𝜑𝑀 ∈ {𝑀, 𝑁, 𝐾})
4721, 46, 32supxrubd 45053 . . . . . . 7 (𝜑𝑀 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
4844, 11, 24, 47eluzd 45359 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀))
49 uzss 12899 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑀) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
5048, 49syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀))
51 eqid 2735 . . . . . . 7 (ℤ𝑁) = (ℤ𝑁)
52 tpid2g 4776 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ {𝑀, 𝑁, 𝐾})
5312, 52syl 17 . . . . . . . 8 (𝜑𝑁 ∈ {𝑀, 𝑁, 𝐾})
5421, 53, 32supxrubd 45053 . . . . . . 7 (𝜑𝑁 ≤ sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
5551, 12, 24, 54eluzd 45359 . . . . . 6 (𝜑 → sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁))
56 uzss 12899 . . . . . 6 (sup({𝑀, 𝑁, 𝐾}, ℝ*, < ) ∈ (ℤ𝑁) → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
5755, 56syl 17 . . . . 5 (𝜑 → (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))
58 fvreseq0 7058 . . . . 5 (((𝐹 Fn (ℤ𝑀) ∧ 𝐺 Fn (ℤ𝑁)) ∧ ((ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑀) ∧ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) ⊆ (ℤ𝑁))) → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
5942, 43, 50, 57, 58syl22anc 839 . . . 4 (𝜑 → ((𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) ↔ ∀𝑘 ∈ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))(𝐹𝑘) = (𝐺𝑘)))
6041, 59mpbird 257 . . 3 (𝜑 → (𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))) = (𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))))
6160fveq2d 6911 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))))
62 eqid 2735 . . 3 (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )) = (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < ))
63 fvexd 6922 . . . 4 (𝜑 → (ℤ𝑀) ∈ V)
6442, 63fnexd 7238 . . 3 (𝜑𝐹 ∈ V)
6542fndmd 6674 . . . 4 (𝜑 → dom 𝐹 = (ℤ𝑀))
66 uzssz 12897 . . . 4 (ℤ𝑀) ⊆ ℤ
6765, 66eqsstrdi 4050 . . 3 (𝜑 → dom 𝐹 ⊆ ℤ)
6824, 62, 64, 67limsupresuz2 45665 . 2 (𝜑 → (lim sup‘(𝐹 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐹))
69 fvexd 6922 . . . 4 (𝜑 → (ℤ𝑁) ∈ V)
7043, 69fnexd 7238 . . 3 (𝜑𝐺 ∈ V)
7143fndmd 6674 . . . 4 (𝜑 → dom 𝐺 = (ℤ𝑁))
72 uzssz 12897 . . . 4 (ℤ𝑁) ⊆ ℤ
7371, 72eqsstrdi 4050 . . 3 (𝜑 → dom 𝐺 ⊆ ℤ)
7424, 62, 70, 73limsupresuz2 45665 . 2 (𝜑 → (lim sup‘(𝐺 ↾ (ℤ‘sup({𝑀, 𝑁, 𝐾}, ℝ*, < )))) = (lim sup‘𝐺))
7561, 68, 743eqtr3d 2783 1 (𝜑 → (lim sup‘𝐹) = (lim sup‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wne 2938  wral 3059  Vcvv 3478  wss 3963  c0 4339  {ctp 4635   class class class wbr 5148   Or wor 5596  dom cdm 5689  cres 5691   Fn wfn 6558  cfv 6563  Fincfn 8984  supcsup 9478  cr 11152  *cxr 11292   < clt 11293  cle 11294  cz 12611  cuz 12876  lim supclsp 15503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-n0 12525  df-z 12612  df-uz 12877  df-q 12989  df-ico 13390  df-limsup 15504
This theorem is referenced by:  limsupequz  45679
  Copyright terms: Public domain W3C validator