![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2736 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1334 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4695 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1085 = wceq 1538 ∈ wcel 2107 Vcvv 3479 {ctp 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1541 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-v 3481 df-un 3969 df-sn 4633 df-pr 4635 df-tp 4637 |
This theorem is referenced by: hash3tpb 14537 wrdl3s3 15004 wwlks2onv 29996 elwwlks2ons3im 29997 umgrwwlks2on 30000 s3rnOLD 32928 cyc3evpm 33166 sgnsf 33178 sgncl 34533 signsw0glem 34560 signsw0g 34563 signswmnd 34564 signswrid 34565 prodfzo03 34610 circlevma 34649 circlemethhgt 34650 hgt750lemg 34661 hgt750lemb 34663 hgt750lema 34664 hgt750leme 34665 tgoldbachgtde 34667 tgoldbachgt 34670 kur14lem7 35209 brtpid2 35714 rabren3dioph 42817 oenord1ex 43319 oenord1 43320 fourierdlem102 46175 fourierdlem114 46187 etransclem48 46249 usgrexmpl1tri 47933 usgrexmpl2nb0 47939 usgrexmpl2nb1 47940 usgrexmpl2nb2 47941 usgrexmpl2nb3 47942 usgrexmpl2nb4 47943 usgrexmpl2nb5 47944 |
Copyright terms: Public domain | W3C validator |