![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2734 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1334 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4712 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1086 = wceq 1537 ∈ wcel 2103 Vcvv 3482 {ctp 4652 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2105 ax-9 2113 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2712 df-cleq 2726 df-clel 2813 df-v 3484 df-un 3975 df-sn 4649 df-pr 4651 df-tp 4653 |
This theorem is referenced by: hash3tpb 14540 wrdl3s3 15007 wwlks2onv 29977 elwwlks2ons3im 29978 umgrwwlks2on 29981 s3rnOLD 32904 cyc3evpm 33135 sgnsf 33147 sgncl 34495 signsw0glem 34522 signsw0g 34525 signswmnd 34526 signswrid 34527 prodfzo03 34572 circlevma 34611 circlemethhgt 34612 hgt750lemg 34623 hgt750lemb 34625 hgt750lema 34626 hgt750leme 34627 tgoldbachgtde 34629 tgoldbachgt 34632 kur14lem7 35172 brtpid2 35676 rabren3dioph 42708 oenord1ex 43217 oenord1 43218 fourierdlem102 46063 fourierdlem114 46075 etransclem48 46137 usgrexmpl1tri 47759 usgrexmpl2nb0 47765 usgrexmpl2nb1 47766 usgrexmpl2nb2 47767 usgrexmpl2nb3 47768 usgrexmpl2nb4 47769 usgrexmpl2nb5 47770 |
Copyright terms: Public domain | W3C validator |