| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1335 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 4661 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3455 {ctp 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3457 df-un 3927 df-sn 4598 df-pr 4600 df-tp 4602 |
| This theorem is referenced by: hash3tpb 14470 wrdl3s3 14938 wwlks2onv 29890 elwwlks2ons3im 29891 umgrwwlks2on 29894 sgncl 32764 s3rnOLD 32875 cyc3evpm 33115 sgnsf 33127 signsw0glem 34552 signsw0g 34555 signswmnd 34556 signswrid 34557 prodfzo03 34602 circlevma 34641 circlemethhgt 34642 hgt750lemg 34653 hgt750lemb 34655 hgt750lema 34656 hgt750leme 34657 tgoldbachgtde 34659 tgoldbachgt 34662 kur14lem7 35201 brtpid2 35706 rabren3dioph 42775 oenord1ex 43276 oenord1 43277 fourierdlem102 46179 fourierdlem114 46191 etransclem48 46253 usgrexmpl1tri 47971 usgrexmpl2nb0 47977 usgrexmpl2nb1 47978 usgrexmpl2nb2 47979 usgrexmpl2nb3 47980 usgrexmpl2nb4 47981 usgrexmpl2nb5 47982 |
| Copyright terms: Public domain | W3C validator |