| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1335 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 4655 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3450 {ctp 4595 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-un 3921 df-sn 4592 df-pr 4594 df-tp 4596 |
| This theorem is referenced by: hash3tpb 14466 wrdl3s3 14934 wwlks2onv 29889 elwwlks2ons3im 29890 umgrwwlks2on 29893 sgncl 32762 s3rnOLD 32873 cyc3evpm 33113 sgnsf 33125 signsw0glem 34550 signsw0g 34553 signswmnd 34554 signswrid 34555 prodfzo03 34600 circlevma 34639 circlemethhgt 34640 hgt750lemg 34651 hgt750lemb 34653 hgt750lema 34654 hgt750leme 34655 tgoldbachgtde 34657 tgoldbachgt 34660 kur14lem7 35199 brtpid2 35704 rabren3dioph 42796 oenord1ex 43297 oenord1 43298 fourierdlem102 46199 fourierdlem114 46211 etransclem48 46273 usgrexmpl1tri 48006 usgrexmpl2nb0 48012 usgrexmpl2nb1 48013 usgrexmpl2nb2 48014 usgrexmpl2nb3 48015 usgrexmpl2nb4 48016 usgrexmpl2nb5 48017 |
| Copyright terms: Public domain | W3C validator |