| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2734 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1334 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 4671 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1539 ∈ wcel 2107 Vcvv 3464 {ctp 4612 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3466 df-un 3938 df-sn 4609 df-pr 4611 df-tp 4613 |
| This theorem is referenced by: hash3tpb 14517 wrdl3s3 14984 wwlks2onv 29920 elwwlks2ons3im 29921 umgrwwlks2on 29924 s3rnOLD 32877 cyc3evpm 33116 sgnsf 33128 sgncl 34482 signsw0glem 34509 signsw0g 34512 signswmnd 34513 signswrid 34514 prodfzo03 34559 circlevma 34598 circlemethhgt 34599 hgt750lemg 34610 hgt750lemb 34612 hgt750lema 34613 hgt750leme 34614 tgoldbachgtde 34616 tgoldbachgt 34619 kur14lem7 35158 brtpid2 35663 rabren3dioph 42771 oenord1ex 43273 oenord1 43274 fourierdlem102 46168 fourierdlem114 46180 etransclem48 46242 usgrexmpl1tri 47930 usgrexmpl2nb0 47936 usgrexmpl2nb1 47937 usgrexmpl2nb2 47938 usgrexmpl2nb3 47939 usgrexmpl2nb4 47940 usgrexmpl2nb5 47941 |
| Copyright terms: Public domain | W3C validator |