| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1335 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 4639 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1541 ∈ wcel 2111 Vcvv 3436 {ctp 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-un 3902 df-sn 4574 df-pr 4576 df-tp 4578 |
| This theorem is referenced by: hash3tpb 14402 wrdl3s3 14869 wwlks2onv 29931 elwwlks2ons3im 29932 usgrwwlks2on 29936 umgrwwlks2on 29937 sgncl 32814 s3rnOLD 32927 cyc3evpm 33119 sgnsf 33131 signsw0glem 34566 signsw0g 34569 signswmnd 34570 signswrid 34571 prodfzo03 34616 circlevma 34655 circlemethhgt 34656 hgt750lemg 34667 hgt750lemb 34669 hgt750lema 34670 hgt750leme 34671 tgoldbachgtde 34673 tgoldbachgt 34676 kur14lem7 35256 brtpid2 35766 rabren3dioph 42918 oenord1ex 43418 oenord1 43419 fourierdlem102 46316 fourierdlem114 46328 etransclem48 46390 usgrexmpl1tri 48135 usgrexmpl2nb0 48141 usgrexmpl2nb1 48142 usgrexmpl2nb2 48143 usgrexmpl2nb3 48144 usgrexmpl2nb4 48145 usgrexmpl2nb5 48146 |
| Copyright terms: Public domain | W3C validator |