Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2737 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1333 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4634 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 Vcvv 3441 {ctp 4575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3443 df-un 3902 df-sn 4572 df-pr 4574 df-tp 4576 |
This theorem is referenced by: wrdl3s3 14749 wwlks2onv 28427 elwwlks2ons3im 28428 umgrwwlks2on 28431 s3rn 31328 cyc3evpm 31525 sgnsf 31537 sgncl 32611 signsw0glem 32638 signsw0g 32641 signswmnd 32642 signswrid 32643 prodfzo03 32689 circlevma 32728 circlemethhgt 32729 hgt750lemg 32740 hgt750lemb 32742 hgt750lema 32743 hgt750leme 32744 tgoldbachgtde 32746 tgoldbachgt 32749 kur14lem7 33279 brtpid2 33769 rabren3dioph 40840 fourierdlem102 43986 fourierdlem114 43998 etransclem48 44060 |
Copyright terms: Public domain | W3C validator |