MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tpid2 Structured version   Visualization version   GIF version

Theorem tpid2 4711
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.)
Hypothesis
Ref Expression
tpid2.1 𝐵 ∈ V
Assertion
Ref Expression
tpid2 𝐵 ∈ {𝐴, 𝐵, 𝐶}

Proof of Theorem tpid2
StepHypRef Expression
1 eqid 2739 . . 3 𝐵 = 𝐵
213mix2i 1332 . 2 (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶)
3 tpid2.1 . . 3 𝐵 ∈ V
43eltp 4629 . 2 (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴𝐵 = 𝐵𝐵 = 𝐶))
52, 4mpbir 230 1 𝐵 ∈ {𝐴, 𝐵, 𝐶}
Colors of variables: wff setvar class
Syntax hints:  w3o 1084   = wceq 1541  wcel 2109  Vcvv 3430  {ctp 4570
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-tru 1544  df-ex 1786  df-sb 2071  df-clab 2717  df-cleq 2731  df-clel 2817  df-v 3432  df-un 3896  df-sn 4567  df-pr 4569  df-tp 4571
This theorem is referenced by:  wrdl3s3  14658  wwlks2onv  28297  elwwlks2ons3im  28298  umgrwwlks2on  28301  s3rn  31199  cyc3evpm  31396  sgnsf  31408  sgncl  32484  signsw0glem  32511  signsw0g  32514  signswmnd  32515  signswrid  32516  prodfzo03  32562  circlevma  32601  circlemethhgt  32602  hgt750lemg  32613  hgt750lemb  32615  hgt750lema  32616  hgt750leme  32617  tgoldbachgtde  32619  tgoldbachgt  32622  kur14lem7  33153  brtpid2  33645  rabren3dioph  40617  fourierdlem102  43703  fourierdlem114  43715  etransclem48  43777
  Copyright terms: Public domain W3C validator