![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2733 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1335 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4692 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1087 = wceq 1542 ∈ wcel 2107 Vcvv 3475 {ctp 4632 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-v 3477 df-un 3953 df-sn 4629 df-pr 4631 df-tp 4633 |
This theorem is referenced by: wrdl3s3 14910 wwlks2onv 29197 elwwlks2ons3im 29198 umgrwwlks2on 29201 s3rn 32100 cyc3evpm 32297 sgnsf 32309 sgncl 33526 signsw0glem 33553 signsw0g 33556 signswmnd 33557 signswrid 33558 prodfzo03 33604 circlevma 33643 circlemethhgt 33644 hgt750lemg 33655 hgt750lemb 33657 hgt750lema 33658 hgt750leme 33659 tgoldbachgtde 33661 tgoldbachgt 33664 kur14lem7 34192 brtpid2 34680 rabren3dioph 41539 oenord1ex 42051 oenord1 42052 fourierdlem102 44911 fourierdlem114 44923 etransclem48 44985 |
Copyright terms: Public domain | W3C validator |