| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1335 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 4649 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3444 {ctp 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-un 3916 df-sn 4586 df-pr 4588 df-tp 4590 |
| This theorem is referenced by: hash3tpb 14436 wrdl3s3 14904 wwlks2onv 29933 elwwlks2ons3im 29934 umgrwwlks2on 29937 sgncl 32806 s3rnOLD 32917 cyc3evpm 33122 sgnsf 33134 signsw0glem 34537 signsw0g 34540 signswmnd 34541 signswrid 34542 prodfzo03 34587 circlevma 34626 circlemethhgt 34627 hgt750lemg 34638 hgt750lemb 34640 hgt750lema 34641 hgt750leme 34642 tgoldbachgtde 34644 tgoldbachgt 34647 kur14lem7 35192 brtpid2 35702 rabren3dioph 42796 oenord1ex 43297 oenord1 43298 fourierdlem102 46199 fourierdlem114 46211 etransclem48 46273 usgrexmpl1tri 48009 usgrexmpl2nb0 48015 usgrexmpl2nb1 48016 usgrexmpl2nb2 48017 usgrexmpl2nb3 48018 usgrexmpl2nb4 48019 usgrexmpl2nb5 48020 |
| Copyright terms: Public domain | W3C validator |