![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2727 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1332 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4688 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1084 = wceq 1534 ∈ wcel 2099 Vcvv 3469 {ctp 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2698 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-tru 1537 df-ex 1775 df-sb 2061 df-clab 2705 df-cleq 2719 df-clel 2805 df-v 3471 df-un 3949 df-sn 4625 df-pr 4627 df-tp 4629 |
This theorem is referenced by: wrdl3s3 14937 wwlks2onv 29751 elwwlks2ons3im 29752 umgrwwlks2on 29755 s3rn 32651 cyc3evpm 32849 sgnsf 32861 sgncl 34094 signsw0glem 34121 signsw0g 34124 signswmnd 34125 signswrid 34126 prodfzo03 34171 circlevma 34210 circlemethhgt 34211 hgt750lemg 34222 hgt750lemb 34224 hgt750lema 34225 hgt750leme 34226 tgoldbachgtde 34228 tgoldbachgt 34231 kur14lem7 34758 brtpid2 35252 rabren3dioph 42157 oenord1ex 42667 oenord1 42668 fourierdlem102 45519 fourierdlem114 45531 etransclem48 45593 |
Copyright terms: Public domain | W3C validator |