![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2725 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1331 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4693 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1083 = wceq 1533 ∈ wcel 2098 Vcvv 3463 {ctp 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-v 3465 df-un 3950 df-sn 4630 df-pr 4632 df-tp 4634 |
This theorem is referenced by: wrdl3s3 14945 wwlks2onv 29820 elwwlks2ons3im 29821 umgrwwlks2on 29824 s3rn 32726 cyc3evpm 32928 sgnsf 32940 sgncl 34228 signsw0glem 34255 signsw0g 34258 signswmnd 34259 signswrid 34260 prodfzo03 34305 circlevma 34344 circlemethhgt 34345 hgt750lemg 34356 hgt750lemb 34358 hgt750lema 34359 hgt750leme 34360 tgoldbachgtde 34362 tgoldbachgt 34365 kur14lem7 34892 brtpid2 35386 rabren3dioph 42300 oenord1ex 42809 oenord1 42810 fourierdlem102 45659 fourierdlem114 45671 etransclem48 45733 |
Copyright terms: Public domain | W3C validator |