Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version |
Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
Ref | Expression |
---|---|
tpid2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2739 | . . 3 ⊢ 𝐵 = 𝐵 | |
2 | 1 | 3mix2i 1332 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
4 | 3 | eltp 4629 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
5 | 2, 4 | mpbir 230 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
Colors of variables: wff setvar class |
Syntax hints: ∨ w3o 1084 = wceq 1541 ∈ wcel 2109 Vcvv 3430 {ctp 4570 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-un 3896 df-sn 4567 df-pr 4569 df-tp 4571 |
This theorem is referenced by: wrdl3s3 14658 wwlks2onv 28297 elwwlks2ons3im 28298 umgrwwlks2on 28301 s3rn 31199 cyc3evpm 31396 sgnsf 31408 sgncl 32484 signsw0glem 32511 signsw0g 32514 signswmnd 32515 signswrid 32516 prodfzo03 32562 circlevma 32601 circlemethhgt 32602 hgt750lemg 32613 hgt750lemb 32615 hgt750lema 32616 hgt750leme 32617 tgoldbachgtde 32619 tgoldbachgt 32622 kur14lem7 33153 brtpid2 33645 rabren3dioph 40617 fourierdlem102 43703 fourierdlem114 43715 etransclem48 43777 |
Copyright terms: Public domain | W3C validator |