| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tpid2 | Structured version Visualization version GIF version | ||
| Description: One of the three elements of an unordered triple. (Contributed by NM, 7-Apr-1994.) (Proof shortened by Andrew Salmon, 29-Jun-2011.) |
| Ref | Expression |
|---|---|
| tpid2.1 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| tpid2 | ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐵 = 𝐵 | |
| 2 | 1 | 3mix2i 1335 | . 2 ⊢ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶) |
| 3 | tpid2.1 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 3 | eltp 4641 | . 2 ⊢ (𝐵 ∈ {𝐴, 𝐵, 𝐶} ↔ (𝐵 = 𝐴 ∨ 𝐵 = 𝐵 ∨ 𝐵 = 𝐶)) |
| 5 | 2, 4 | mpbir 231 | 1 ⊢ 𝐵 ∈ {𝐴, 𝐵, 𝐶} |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 Vcvv 3436 {ctp 4581 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-un 3908 df-sn 4578 df-pr 4580 df-tp 4582 |
| This theorem is referenced by: hash3tpb 14402 wrdl3s3 14869 wwlks2onv 29898 elwwlks2ons3im 29899 umgrwwlks2on 29902 sgncl 32777 s3rnOLD 32888 cyc3evpm 33093 sgnsf 33105 signsw0glem 34527 signsw0g 34530 signswmnd 34531 signswrid 34532 prodfzo03 34577 circlevma 34616 circlemethhgt 34617 hgt750lemg 34628 hgt750lemb 34630 hgt750lema 34631 hgt750leme 34632 tgoldbachgtde 34634 tgoldbachgt 34637 kur14lem7 35195 brtpid2 35705 rabren3dioph 42798 oenord1ex 43298 oenord1 43299 fourierdlem102 46199 fourierdlem114 46211 etransclem48 46273 usgrexmpl1tri 48019 usgrexmpl2nb0 48025 usgrexmpl2nb1 48026 usgrexmpl2nb2 48027 usgrexmpl2nb3 48028 usgrexmpl2nb4 48029 usgrexmpl2nb5 48030 |
| Copyright terms: Public domain | W3C validator |