Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem1 Structured version   Visualization version   GIF version

Theorem modelaxreplem1 44951
Description: Lemma for modelaxrep 44954. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem1.5 𝐴𝑥
Assertion
Ref Expression
modelaxreplem1 (𝜓𝐴𝑀)
Distinct variable group:   𝑓,𝑀
Allowed substitution hints:   𝜓(𝑥,𝑓)   𝐴(𝑥,𝑓)   𝑀(𝑥)

Proof of Theorem modelaxreplem1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
2 eleq1 2822 . . 3 (𝐴 = ∅ → (𝐴𝑀 ↔ ∅ ∈ 𝑀))
31, 2syl5ibrcom 247 . 2 (𝜓 → (𝐴 = ∅ → 𝐴𝑀))
4 vex 3463 . . . . . 6 𝑥 ∈ V
5 modelaxreplem1.5 . . . . . 6 𝐴𝑥
64, 5ssexi 5292 . . . . 5 𝐴 ∈ V
760sdom 9119 . . . 4 (∅ ≺ 𝐴𝐴 ≠ ∅)
8 ssdomg 9012 . . . . . 6 (𝑥 ∈ V → (𝐴𝑥𝐴𝑥))
94, 5, 8mp2 9 . . . . 5 𝐴𝑥
10 fodomr 9140 . . . . 5 ((∅ ≺ 𝐴𝐴𝑥) → ∃𝑔 𝑔:𝑥onto𝐴)
119, 10mpan2 691 . . . 4 (∅ ≺ 𝐴 → ∃𝑔 𝑔:𝑥onto𝐴)
127, 11sylbir 235 . . 3 (𝐴 ≠ ∅ → ∃𝑔 𝑔:𝑥onto𝐴)
13 df-fo 6536 . . . . 5 (𝑔:𝑥onto𝐴 ↔ (𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴))
14 df-fn 6533 . . . . . . . 8 (𝑔 Fn 𝑥 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝑥))
15 modelaxreplem.4 . . . . . . . . . 10 (𝜓𝑥𝑀)
16 eleq1 2822 . . . . . . . . . 10 (dom 𝑔 = 𝑥 → (dom 𝑔𝑀𝑥𝑀))
1715, 16syl5ibrcom 247 . . . . . . . . 9 (𝜓 → (dom 𝑔 = 𝑥 → dom 𝑔𝑀))
1817anim2d 612 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔 = 𝑥) → (Fun 𝑔 ∧ dom 𝑔𝑀)))
1914, 18biimtrid 242 . . . . . . 7 (𝜓 → (𝑔 Fn 𝑥 → (Fun 𝑔 ∧ dom 𝑔𝑀)))
20 modelaxreplem.1 . . . . . . . . 9 (𝜓𝑥𝑀)
215, 20sstrid 3970 . . . . . . . 8 (𝜓𝐴𝑀)
22 sseq1 3984 . . . . . . . 8 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
2321, 22syl5ibrcom 247 . . . . . . 7 (𝜓 → (ran 𝑔 = 𝐴 → ran 𝑔𝑀))
24 df-3an 1088 . . . . . . . 8 ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀))
25 modelaxreplem.2 . . . . . . . . 9 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
26 funeq 6555 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
27 dmeq 5883 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
2827eleq1d 2819 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
29 rneq 5916 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3029sseq1d 3990 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3126, 28, 303anbi123d 1438 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
3229eleq1d 2819 . . . . . . . . . . 11 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3331, 32imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
3433spvv 1996 . . . . . . . . 9 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3525, 34syl 17 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3624, 35biimtrrid 243 . . . . . . 7 (𝜓 → (((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3719, 23, 36syl2and 608 . . . . . 6 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → ran 𝑔𝑀))
38 eleq1 2822 . . . . . . 7 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
3938adantl 481 . . . . . 6 ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → (ran 𝑔𝑀𝐴𝑀))
4037, 39mpbidi 241 . . . . 5 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → 𝐴𝑀))
4113, 40biimtrid 242 . . . 4 (𝜓 → (𝑔:𝑥onto𝐴𝐴𝑀))
4241exlimdv 1933 . . 3 (𝜓 → (∃𝑔 𝑔:𝑥onto𝐴𝐴𝑀))
4312, 42syl5 34 . 2 (𝜓 → (𝐴 ≠ ∅ → 𝐴𝑀))
443, 43pm2.61dne 3018 1 (𝜓𝐴𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2108  wne 2932  Vcvv 3459  wss 3926  c0 4308   class class class wbr 5119  dom cdm 5654  ran crn 5655  Fun wfun 6524   Fn wfn 6525  ontowfo 6528  cdom 8955  csdm 8956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-en 8958  df-dom 8959  df-sdom 8960
This theorem is referenced by:  modelaxreplem2  44952
  Copyright terms: Public domain W3C validator