Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem1 Structured version   Visualization version   GIF version

Theorem modelaxreplem1 45070
Description: Lemma for modelaxrep 45073. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem1.5 𝐴𝑥
Assertion
Ref Expression
modelaxreplem1 (𝜓𝐴𝑀)
Distinct variable group:   𝑓,𝑀
Allowed substitution hints:   𝜓(𝑥,𝑓)   𝐴(𝑥,𝑓)   𝑀(𝑥)

Proof of Theorem modelaxreplem1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
2 eleq1 2819 . . 3 (𝐴 = ∅ → (𝐴𝑀 ↔ ∅ ∈ 𝑀))
31, 2syl5ibrcom 247 . 2 (𝜓 → (𝐴 = ∅ → 𝐴𝑀))
4 vex 3440 . . . . . 6 𝑥 ∈ V
5 modelaxreplem1.5 . . . . . 6 𝐴𝑥
64, 5ssexi 5258 . . . . 5 𝐴 ∈ V
760sdom 9021 . . . 4 (∅ ≺ 𝐴𝐴 ≠ ∅)
8 ssdomg 8922 . . . . . 6 (𝑥 ∈ V → (𝐴𝑥𝐴𝑥))
94, 5, 8mp2 9 . . . . 5 𝐴𝑥
10 fodomr 9041 . . . . 5 ((∅ ≺ 𝐴𝐴𝑥) → ∃𝑔 𝑔:𝑥onto𝐴)
119, 10mpan2 691 . . . 4 (∅ ≺ 𝐴 → ∃𝑔 𝑔:𝑥onto𝐴)
127, 11sylbir 235 . . 3 (𝐴 ≠ ∅ → ∃𝑔 𝑔:𝑥onto𝐴)
13 df-fo 6487 . . . . 5 (𝑔:𝑥onto𝐴 ↔ (𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴))
14 df-fn 6484 . . . . . . . 8 (𝑔 Fn 𝑥 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝑥))
15 modelaxreplem.4 . . . . . . . . . 10 (𝜓𝑥𝑀)
16 eleq1 2819 . . . . . . . . . 10 (dom 𝑔 = 𝑥 → (dom 𝑔𝑀𝑥𝑀))
1715, 16syl5ibrcom 247 . . . . . . . . 9 (𝜓 → (dom 𝑔 = 𝑥 → dom 𝑔𝑀))
1817anim2d 612 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔 = 𝑥) → (Fun 𝑔 ∧ dom 𝑔𝑀)))
1914, 18biimtrid 242 . . . . . . 7 (𝜓 → (𝑔 Fn 𝑥 → (Fun 𝑔 ∧ dom 𝑔𝑀)))
20 modelaxreplem.1 . . . . . . . . 9 (𝜓𝑥𝑀)
215, 20sstrid 3941 . . . . . . . 8 (𝜓𝐴𝑀)
22 sseq1 3955 . . . . . . . 8 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
2321, 22syl5ibrcom 247 . . . . . . 7 (𝜓 → (ran 𝑔 = 𝐴 → ran 𝑔𝑀))
24 df-3an 1088 . . . . . . . 8 ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀))
25 modelaxreplem.2 . . . . . . . . 9 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
26 funeq 6501 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
27 dmeq 5842 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
2827eleq1d 2816 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
29 rneq 5875 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3029sseq1d 3961 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3126, 28, 303anbi123d 1438 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
3229eleq1d 2816 . . . . . . . . . . 11 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3331, 32imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
3433spvv 1989 . . . . . . . . 9 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3525, 34syl 17 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3624, 35biimtrrid 243 . . . . . . 7 (𝜓 → (((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3719, 23, 36syl2and 608 . . . . . 6 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → ran 𝑔𝑀))
38 eleq1 2819 . . . . . . 7 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
3938adantl 481 . . . . . 6 ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → (ran 𝑔𝑀𝐴𝑀))
4037, 39mpbidi 241 . . . . 5 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → 𝐴𝑀))
4113, 40biimtrid 242 . . . 4 (𝜓 → (𝑔:𝑥onto𝐴𝐴𝑀))
4241exlimdv 1934 . . 3 (𝜓 → (∃𝑔 𝑔:𝑥onto𝐴𝐴𝑀))
4312, 42syl5 34 . 2 (𝜓 → (𝐴 ≠ ∅ → 𝐴𝑀))
443, 43pm2.61dne 3014 1 (𝜓𝐴𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1539   = wceq 1541  wex 1780  wcel 2111  wne 2928  Vcvv 3436  wss 3897  c0 4280   class class class wbr 5089  dom cdm 5614  ran crn 5615  Fun wfun 6475   Fn wfn 6476  ontowfo 6479  cdom 8867  csdm 8868
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870  df-dom 8871  df-sdom 8872
This theorem is referenced by:  modelaxreplem2  45071
  Copyright terms: Public domain W3C validator