Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem1 Structured version   Visualization version   GIF version

Theorem modelaxreplem1 44961
Description: Lemma for modelaxrep 44964. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem1.5 𝐴𝑥
Assertion
Ref Expression
modelaxreplem1 (𝜓𝐴𝑀)
Distinct variable group:   𝑓,𝑀
Allowed substitution hints:   𝜓(𝑥,𝑓)   𝐴(𝑥,𝑓)   𝑀(𝑥)

Proof of Theorem modelaxreplem1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
2 eleq1 2816 . . 3 (𝐴 = ∅ → (𝐴𝑀 ↔ ∅ ∈ 𝑀))
31, 2syl5ibrcom 247 . 2 (𝜓 → (𝐴 = ∅ → 𝐴𝑀))
4 vex 3448 . . . . . 6 𝑥 ∈ V
5 modelaxreplem1.5 . . . . . 6 𝐴𝑥
64, 5ssexi 5272 . . . . 5 𝐴 ∈ V
760sdom 9049 . . . 4 (∅ ≺ 𝐴𝐴 ≠ ∅)
8 ssdomg 8948 . . . . . 6 (𝑥 ∈ V → (𝐴𝑥𝐴𝑥))
94, 5, 8mp2 9 . . . . 5 𝐴𝑥
10 fodomr 9069 . . . . 5 ((∅ ≺ 𝐴𝐴𝑥) → ∃𝑔 𝑔:𝑥onto𝐴)
119, 10mpan2 691 . . . 4 (∅ ≺ 𝐴 → ∃𝑔 𝑔:𝑥onto𝐴)
127, 11sylbir 235 . . 3 (𝐴 ≠ ∅ → ∃𝑔 𝑔:𝑥onto𝐴)
13 df-fo 6505 . . . . 5 (𝑔:𝑥onto𝐴 ↔ (𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴))
14 df-fn 6502 . . . . . . . 8 (𝑔 Fn 𝑥 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝑥))
15 modelaxreplem.4 . . . . . . . . . 10 (𝜓𝑥𝑀)
16 eleq1 2816 . . . . . . . . . 10 (dom 𝑔 = 𝑥 → (dom 𝑔𝑀𝑥𝑀))
1715, 16syl5ibrcom 247 . . . . . . . . 9 (𝜓 → (dom 𝑔 = 𝑥 → dom 𝑔𝑀))
1817anim2d 612 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔 = 𝑥) → (Fun 𝑔 ∧ dom 𝑔𝑀)))
1914, 18biimtrid 242 . . . . . . 7 (𝜓 → (𝑔 Fn 𝑥 → (Fun 𝑔 ∧ dom 𝑔𝑀)))
20 modelaxreplem.1 . . . . . . . . 9 (𝜓𝑥𝑀)
215, 20sstrid 3955 . . . . . . . 8 (𝜓𝐴𝑀)
22 sseq1 3969 . . . . . . . 8 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
2321, 22syl5ibrcom 247 . . . . . . 7 (𝜓 → (ran 𝑔 = 𝐴 → ran 𝑔𝑀))
24 df-3an 1088 . . . . . . . 8 ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀))
25 modelaxreplem.2 . . . . . . . . 9 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
26 funeq 6520 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
27 dmeq 5857 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
2827eleq1d 2813 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
29 rneq 5889 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3029sseq1d 3975 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3126, 28, 303anbi123d 1438 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
3229eleq1d 2813 . . . . . . . . . . 11 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3331, 32imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
3433spvv 1988 . . . . . . . . 9 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3525, 34syl 17 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3624, 35biimtrrid 243 . . . . . . 7 (𝜓 → (((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3719, 23, 36syl2and 608 . . . . . 6 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → ran 𝑔𝑀))
38 eleq1 2816 . . . . . . 7 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
3938adantl 481 . . . . . 6 ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → (ran 𝑔𝑀𝐴𝑀))
4037, 39mpbidi 241 . . . . 5 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → 𝐴𝑀))
4113, 40biimtrid 242 . . . 4 (𝜓 → (𝑔:𝑥onto𝐴𝐴𝑀))
4241exlimdv 1933 . . 3 (𝜓 → (∃𝑔 𝑔:𝑥onto𝐴𝐴𝑀))
4312, 42syl5 34 . 2 (𝜓 → (𝐴 ≠ ∅ → 𝐴𝑀))
443, 43pm2.61dne 3011 1 (𝜓𝐴𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3444  wss 3911  c0 4292   class class class wbr 5102  dom cdm 5631  ran crn 5632  Fun wfun 6493   Fn wfn 6494  ontowfo 6497  cdom 8893  csdm 8894
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-en 8896  df-dom 8897  df-sdom 8898
This theorem is referenced by:  modelaxreplem2  44962
  Copyright terms: Public domain W3C validator