Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem1 Structured version   Visualization version   GIF version

Theorem modelaxreplem1 44962
Description: Lemma for modelaxrep 44965. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem1.5 𝐴𝑥
Assertion
Ref Expression
modelaxreplem1 (𝜓𝐴𝑀)
Distinct variable group:   𝑓,𝑀
Allowed substitution hints:   𝜓(𝑥,𝑓)   𝐴(𝑥,𝑓)   𝑀(𝑥)

Proof of Theorem modelaxreplem1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
2 eleq1 2816 . . 3 (𝐴 = ∅ → (𝐴𝑀 ↔ ∅ ∈ 𝑀))
31, 2syl5ibrcom 247 . 2 (𝜓 → (𝐴 = ∅ → 𝐴𝑀))
4 vex 3440 . . . . . 6 𝑥 ∈ V
5 modelaxreplem1.5 . . . . . 6 𝐴𝑥
64, 5ssexi 5261 . . . . 5 𝐴 ∈ V
760sdom 9025 . . . 4 (∅ ≺ 𝐴𝐴 ≠ ∅)
8 ssdomg 8925 . . . . . 6 (𝑥 ∈ V → (𝐴𝑥𝐴𝑥))
94, 5, 8mp2 9 . . . . 5 𝐴𝑥
10 fodomr 9045 . . . . 5 ((∅ ≺ 𝐴𝐴𝑥) → ∃𝑔 𝑔:𝑥onto𝐴)
119, 10mpan2 691 . . . 4 (∅ ≺ 𝐴 → ∃𝑔 𝑔:𝑥onto𝐴)
127, 11sylbir 235 . . 3 (𝐴 ≠ ∅ → ∃𝑔 𝑔:𝑥onto𝐴)
13 df-fo 6488 . . . . 5 (𝑔:𝑥onto𝐴 ↔ (𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴))
14 df-fn 6485 . . . . . . . 8 (𝑔 Fn 𝑥 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝑥))
15 modelaxreplem.4 . . . . . . . . . 10 (𝜓𝑥𝑀)
16 eleq1 2816 . . . . . . . . . 10 (dom 𝑔 = 𝑥 → (dom 𝑔𝑀𝑥𝑀))
1715, 16syl5ibrcom 247 . . . . . . . . 9 (𝜓 → (dom 𝑔 = 𝑥 → dom 𝑔𝑀))
1817anim2d 612 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔 = 𝑥) → (Fun 𝑔 ∧ dom 𝑔𝑀)))
1914, 18biimtrid 242 . . . . . . 7 (𝜓 → (𝑔 Fn 𝑥 → (Fun 𝑔 ∧ dom 𝑔𝑀)))
20 modelaxreplem.1 . . . . . . . . 9 (𝜓𝑥𝑀)
215, 20sstrid 3947 . . . . . . . 8 (𝜓𝐴𝑀)
22 sseq1 3961 . . . . . . . 8 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
2321, 22syl5ibrcom 247 . . . . . . 7 (𝜓 → (ran 𝑔 = 𝐴 → ran 𝑔𝑀))
24 df-3an 1088 . . . . . . . 8 ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀))
25 modelaxreplem.2 . . . . . . . . 9 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
26 funeq 6502 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
27 dmeq 5846 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
2827eleq1d 2813 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
29 rneq 5878 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3029sseq1d 3967 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3126, 28, 303anbi123d 1438 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
3229eleq1d 2813 . . . . . . . . . . 11 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3331, 32imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
3433spvv 1988 . . . . . . . . 9 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3525, 34syl 17 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3624, 35biimtrrid 243 . . . . . . 7 (𝜓 → (((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3719, 23, 36syl2and 608 . . . . . 6 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → ran 𝑔𝑀))
38 eleq1 2816 . . . . . . 7 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
3938adantl 481 . . . . . 6 ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → (ran 𝑔𝑀𝐴𝑀))
4037, 39mpbidi 241 . . . . 5 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → 𝐴𝑀))
4113, 40biimtrid 242 . . . 4 (𝜓 → (𝑔:𝑥onto𝐴𝐴𝑀))
4241exlimdv 1933 . . 3 (𝜓 → (∃𝑔 𝑔:𝑥onto𝐴𝐴𝑀))
4312, 42syl5 34 . 2 (𝜓 → (𝐴 ≠ ∅ → 𝐴𝑀))
443, 43pm2.61dne 3011 1 (𝜓𝐴𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2925  Vcvv 3436  wss 3903  c0 4284   class class class wbr 5092  dom cdm 5619  ran crn 5620  Fun wfun 6476   Fn wfn 6477  ontowfo 6480  cdom 8870  csdm 8871
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-en 8873  df-dom 8874  df-sdom 8875
This theorem is referenced by:  modelaxreplem2  44963
  Copyright terms: Public domain W3C validator