Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modelaxreplem1 Structured version   Visualization version   GIF version

Theorem modelaxreplem1 44975
Description: Lemma for modelaxrep 44978. We show that 𝑀 is closed under taking subsets. (Contributed by Eric Schmidt, 29-Sep-2025.)
Hypotheses
Ref Expression
modelaxreplem.1 (𝜓𝑥𝑀)
modelaxreplem.2 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
modelaxreplem.3 (𝜓 → ∅ ∈ 𝑀)
modelaxreplem.4 (𝜓𝑥𝑀)
modelaxreplem1.5 𝐴𝑥
Assertion
Ref Expression
modelaxreplem1 (𝜓𝐴𝑀)
Distinct variable group:   𝑓,𝑀
Allowed substitution hints:   𝜓(𝑥,𝑓)   𝐴(𝑥,𝑓)   𝑀(𝑥)

Proof of Theorem modelaxreplem1
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 modelaxreplem.3 . . 3 (𝜓 → ∅ ∈ 𝑀)
2 eleq1 2817 . . 3 (𝐴 = ∅ → (𝐴𝑀 ↔ ∅ ∈ 𝑀))
31, 2syl5ibrcom 247 . 2 (𝜓 → (𝐴 = ∅ → 𝐴𝑀))
4 vex 3454 . . . . . 6 𝑥 ∈ V
5 modelaxreplem1.5 . . . . . 6 𝐴𝑥
64, 5ssexi 5280 . . . . 5 𝐴 ∈ V
760sdom 9078 . . . 4 (∅ ≺ 𝐴𝐴 ≠ ∅)
8 ssdomg 8974 . . . . . 6 (𝑥 ∈ V → (𝐴𝑥𝐴𝑥))
94, 5, 8mp2 9 . . . . 5 𝐴𝑥
10 fodomr 9098 . . . . 5 ((∅ ≺ 𝐴𝐴𝑥) → ∃𝑔 𝑔:𝑥onto𝐴)
119, 10mpan2 691 . . . 4 (∅ ≺ 𝐴 → ∃𝑔 𝑔:𝑥onto𝐴)
127, 11sylbir 235 . . 3 (𝐴 ≠ ∅ → ∃𝑔 𝑔:𝑥onto𝐴)
13 df-fo 6520 . . . . 5 (𝑔:𝑥onto𝐴 ↔ (𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴))
14 df-fn 6517 . . . . . . . 8 (𝑔 Fn 𝑥 ↔ (Fun 𝑔 ∧ dom 𝑔 = 𝑥))
15 modelaxreplem.4 . . . . . . . . . 10 (𝜓𝑥𝑀)
16 eleq1 2817 . . . . . . . . . 10 (dom 𝑔 = 𝑥 → (dom 𝑔𝑀𝑥𝑀))
1715, 16syl5ibrcom 247 . . . . . . . . 9 (𝜓 → (dom 𝑔 = 𝑥 → dom 𝑔𝑀))
1817anim2d 612 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔 = 𝑥) → (Fun 𝑔 ∧ dom 𝑔𝑀)))
1914, 18biimtrid 242 . . . . . . 7 (𝜓 → (𝑔 Fn 𝑥 → (Fun 𝑔 ∧ dom 𝑔𝑀)))
20 modelaxreplem.1 . . . . . . . . 9 (𝜓𝑥𝑀)
215, 20sstrid 3961 . . . . . . . 8 (𝜓𝐴𝑀)
22 sseq1 3975 . . . . . . . 8 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
2321, 22syl5ibrcom 247 . . . . . . 7 (𝜓 → (ran 𝑔 = 𝐴 → ran 𝑔𝑀))
24 df-3an 1088 . . . . . . . 8 ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀))
25 modelaxreplem.2 . . . . . . . . 9 (𝜓 → ∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀))
26 funeq 6539 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (Fun 𝑓 ↔ Fun 𝑔))
27 dmeq 5870 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → dom 𝑓 = dom 𝑔)
2827eleq1d 2814 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (dom 𝑓𝑀 ↔ dom 𝑔𝑀))
29 rneq 5903 . . . . . . . . . . . . 13 (𝑓 = 𝑔 → ran 𝑓 = ran 𝑔)
3029sseq1d 3981 . . . . . . . . . . . 12 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3126, 28, 303anbi123d 1438 . . . . . . . . . . 11 (𝑓 = 𝑔 → ((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) ↔ (Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀)))
3229eleq1d 2814 . . . . . . . . . . 11 (𝑓 = 𝑔 → (ran 𝑓𝑀 ↔ ran 𝑔𝑀))
3331, 32imbi12d 344 . . . . . . . . . 10 (𝑓 = 𝑔 → (((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) ↔ ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀)))
3433spvv 1988 . . . . . . . . 9 (∀𝑓((Fun 𝑓 ∧ dom 𝑓𝑀 ∧ ran 𝑓𝑀) → ran 𝑓𝑀) → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3525, 34syl 17 . . . . . . . 8 (𝜓 → ((Fun 𝑔 ∧ dom 𝑔𝑀 ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3624, 35biimtrrid 243 . . . . . . 7 (𝜓 → (((Fun 𝑔 ∧ dom 𝑔𝑀) ∧ ran 𝑔𝑀) → ran 𝑔𝑀))
3719, 23, 36syl2and 608 . . . . . 6 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → ran 𝑔𝑀))
38 eleq1 2817 . . . . . . 7 (ran 𝑔 = 𝐴 → (ran 𝑔𝑀𝐴𝑀))
3938adantl 481 . . . . . 6 ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → (ran 𝑔𝑀𝐴𝑀))
4037, 39mpbidi 241 . . . . 5 (𝜓 → ((𝑔 Fn 𝑥 ∧ ran 𝑔 = 𝐴) → 𝐴𝑀))
4113, 40biimtrid 242 . . . 4 (𝜓 → (𝑔:𝑥onto𝐴𝐴𝑀))
4241exlimdv 1933 . . 3 (𝜓 → (∃𝑔 𝑔:𝑥onto𝐴𝐴𝑀))
4312, 42syl5 34 . 2 (𝜓 → (𝐴 ≠ ∅ → 𝐴𝑀))
443, 43pm2.61dne 3012 1 (𝜓𝐴𝑀)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wal 1538   = wceq 1540  wex 1779  wcel 2109  wne 2926  Vcvv 3450  wss 3917  c0 4299   class class class wbr 5110  dom cdm 5641  ran crn 5642  Fun wfun 6508   Fn wfn 6509  ontowfo 6512  cdom 8919  csdm 8920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-en 8922  df-dom 8923  df-sdom 8924
This theorem is referenced by:  modelaxreplem2  44976
  Copyright terms: Public domain W3C validator