Users' Mathboxes Mathbox for Eric Schmidt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wfaxext Structured version   Visualization version   GIF version

Theorem wfaxext 44983
Description: The class of well-founded sets models the Axiom of Extensionality ax-ext 2701. Part of Corollary II.2.5 of [Kunen2] p. 112.

This is the first of a series of theorems showing that all the axioms of ZFC hold in the class of well-founded sets, which we here denote by 𝑊. More precisely, for each axiom of ZFC, we obtain a provable statement if we restrict all quantifiers to 𝑊 (including implicit universal quantifiers on free variables).

None of these proofs use the Axiom of Regularity. In particular, the Axiom of Regularity itself is proved to hold in 𝑊 without using Regularity. Further, the Axiom of Choice is used only in the proof that Choice holds in 𝑊. This has the consequence that any theorem of ZF (possibly proved using Regularity) can be proved, without using Regularity, to hold in 𝑊. This gives us a relative consistency result: If ZF without Regularity is consistent, so is ZF itself. Similarly, if ZFC without Regularity is consistent, so is ZFC itself. These consistency results are metatheorems and are part of Theorem II.2.13 of [Kunen2] p. 114.

(Contributed by Eric Schmidt, 11-Sep-2025.) (Revised by Eric Schmidt, 29-Sep-2025.)

Hypothesis
Ref Expression
wfax.1 𝑊 = (𝑅1 “ On)
Assertion
Ref Expression
wfaxext 𝑥𝑊𝑦𝑊 (∀𝑧𝑊 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝑧,𝑊

Proof of Theorem wfaxext
StepHypRef Expression
1 trwf 44949 . . 3 Tr (𝑅1 “ On)
2 wfax.1 . . . 4 𝑊 = (𝑅1 “ On)
3 treq 5202 . . . 4 (𝑊 = (𝑅1 “ On) → (Tr 𝑊 ↔ Tr (𝑅1 “ On)))
42, 3ax-mp 5 . . 3 (Tr 𝑊 ↔ Tr (𝑅1 “ On))
51, 4mpbir 231 . 2 Tr 𝑊
6 traxext 44967 . 2 (Tr 𝑊 → ∀𝑥𝑊𝑦𝑊 (∀𝑧𝑊 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦))
75, 6ax-mp 5 1 𝑥𝑊𝑦𝑊 (∀𝑧𝑊 (𝑧𝑥𝑧𝑦) → 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wral 3044   cuni 4856  Tr wtr 5195  cima 5616  Oncon0 6301  𝑅1cr1 9646
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-ov 7343  df-om 7791  df-2nd 7916  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-r1 9648
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator